• Title/Summary/Keyword: electrochemical reaction

Search Result 1,220, Processing Time 0.028 seconds

Analysis of issues in gate recess etching in the InAlAs/InGaAs HEMT manufacturing process

  • Byoung-Gue Min;Jong-Min Lee;Hyung Sup Yoon;Woo-Jin Chang;Jong-Yul Park;Dong Min Kang;Sung-Jae Chang;Hyun-Wook Jung
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.171-179
    • /
    • 2023
  • We have developed an InAlAs/InGaAs metamorphic high electron mobility transistor device fabrication process where the gate length can be tuned within the range of 0.13㎛-0.16㎛ to suit the intended application. The core processes are a two-step electron-beam lithography process using a three-layer resist and gate recess etching process using citric acid. An electron-beam lithography process was developed to fabricate a T-shaped gate electrode with a fine gate foot and a relatively large gate head. This was realized through the use of three-layered resist and two-step electron beam exposure and development. Citric acid-based gate recess etching is a wet etching, so it is very important to secure etching uniformity and process reproducibility. The device layout was designed by considering the electrochemical reaction involved in recess etching, and a reproducible gate recess etching process was developed by finding optimized etching conditions. Using the developed gate electrode process technology, we were able to successfully manufacture various monolithic microwave integrated circuits, including low noise amplifiers that can be used in the 28 GHz to 94 GHz frequency range.

Effects of Chloride and Sulfate Ions on Corrosion Behaviors of Structural Materials Based on Design of Experiment (실험계획에 기반한 수돗물 성분(Chloride and Sulfate Ions)의 구조재료 부식 영향성 고찰)

  • Dong-In Lim;Heng-Su Noh;Hyeok-Jun Kwon;Sung-Ryul Park;Man-Sik Jo;Doo-Youl Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.201-213
    • /
    • 2023
  • Corrosion management of an aircraft and its engine relies on rinsing and cleaning using tap water. Few studies have reported effects of tap water species on corrosion behaviors of structural materials. In this study, a series of experiments were conducted based on the design of experiment. Solutions with different levels of chloride and sulfate ions were prepared using a full factorial design. Two structural materials (aluminum alloy and steel) were used for an alternate immersion test. Weight loss was then measured. In addition, a silver specimen was utilized as a sensor for chloride deposition measurement. The silver specimen was examined using the electrochemical reduction method, XPS, and SEM-EDS. Surface analysis revealed that levels of chloride and sulfate ions were sufficient for the formation of silver chloride and silver surface. Statistical analysis of weight loss and chloride deposition rate showed significant differences in measured values. Concentration of chloride ions greatly affected corrosion behaviors of structural materials. Sulfate ion hindered the adsorption reaction. These results emphasize the importance of controlling ion concentration of tap water used for cleaning and rinsing an aircraft.

Synthesis of Carbon Nano Silicon Composites for Secondary Battery Anode Materials Using RF Thermal Plasma (RF 열플라즈마를 이용한 이차전지 음극재용 탄소나노실리콘복합소재 합성)

  • Soon-Jik Lee;Dae-Shin Kim;Jeong-Mi Yeon;Won-Gyu Park;Myeong-Seon Shin;Seon-Yong Choi;Sung-Hoo Ju
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.257-264
    • /
    • 2023
  • To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).

Novel Synthesis of MnO2-SiC Fiber-TiO2 Ternary Composite and Effective Photocatalytic Degradation with Standard Dyes

  • Latiful Kabir;Yeon Woo Choi;Yun Seo Shin;Yeon Ji Shin;Geun Chan Kim;Jun Hyeok Choi;Jo Eun Kim;Young Jun Joo;Kwang Youn Cho;Hyuk Kim;Je-Woo Cha;Won-Chun Oh
    • Korean Journal of Materials Research
    • /
    • v.34 no.6
    • /
    • pp.275-282
    • /
    • 2024
  • In this work, we investigated the photo-degradation performance of MnO2-SiC fiber-TiO2 (MnO2-SiC-TiO2) ternary nanocomposite according to visible light excitation utilizing methylene blue (MB) and methyl orange (MO) as standard dyes. The photocatalytic physicochemical characteristics of this ternary nanocomposite were described by X-ray diffraction (XRD), scanning electron microscopy (SEM), tunneling electron microscopy (TEM), ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), photocurrent and cyclic voltammogram (CV) test. Photolysis studies of the synthesized MnO2-SiC-TiO2 composite were conducted using standard dyes of MB and MO under UV light irradiation. The experiments revealed that the MnO2-SiC-TiO2 exhibits the greatest photocatalytic dye degradation performance of around 20 % with MB, and of around 10 % with MO, respectively, within 120 min. Furthermore, MnO2-SiC-TiO2 showed good stability against photocatalytic degradation. The photocatalytic efficiency of the nanocomposite was indicated by the adequate photocatalytic reaction process. These research results show the practical application potential of SiC fibers and the performance of a photocatalyst composite that combines these fibers with metal oxides.

Fabrication of intermediate-temperature solid oxide fuel cells with La0.6Sr0.4CoO3-𝛿 nanowires based on polycarbonate membrane filter (Polycarbonate 멤브레인 필터 기반 La0.6Sr0.4CoO3-𝛿 나노와이어가 적용된 중온형 고체산화물 연료전지 제작)

  • Kang Han;Young Gyun Goh;Gyu Jin Hwang;Hyun Ho Shin;Sung Soo Shin
    • Particle and aerosol research
    • /
    • v.20 no.3
    • /
    • pp.95-102
    • /
    • 2024
  • Enhancing the oxygen surface exchange reaction by increasing the specific surface area of the electrode is a promising structural approach to lowering the operating temperature of solid oxide fuel cells (SOFCs). Nanowire structures, due to their high specific surface area and lower tortuosity of ion and electron conduction pathways, play a vital role in enhancing SOFC electrode performance. In this study, we synthesized La0.6Sr0.4CoO3-𝛿 (LSC) nanowires using a polycarbonate membrane filter as a nanotemplate and applied them to the cathode for intermediate-temperature SOFC fabrication. The fabricated cell exhibited a 10% increase in peak power density at 650℃, achieving 0.506 W·cm-2, compared to cell using only commercial LSC powder. Furthermore, distribution of relaxation times analysis revealed a 15% reduction in area-specific polarization resistance in the mid-frequency range. These findings demonstrated that the electrode with LSC nanowires fabricated through electrospray deposition can significantly improve electrochemical performance of intermediate-temperature SOFC.

Studies on the Electrochemical Properties of Oxygen Adducts Tetradentate Schiff Base Cobalt (Ⅱ) Complexes in Aprotic Solvents (Ⅱ) (비수용매에서 네자리 Schiff Base Cobalt (II) 착물들의 산소첨가 생성물에 대한 전기화학적 성질에 관한 연구 (제 2 보))

  • Ki-Hyung Chjo;Jin-Soon Chung;Heui-Suk Ham;Seoing-Seob Seo
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.192-202
    • /
    • 1989
  • Tetradentate schiff bases cabalt (II) complexes; Co(SED) and Co(ο-BSDT) were synthesized and these complexes allowed to reaction with dry oxygen to form oxygen adduct cobalt(III) complexes such as $[Co(o-BSDT)(DMSO)]_2O_2,\;[Co(SED)(Py)]_2O_2\;and\;[Co(o-BSDT)(Py)]_2O_2$ in DMSO and pyridine solutions. It has been found that the oxygen adduct cobalt(III) complexes have hexacoordinated octahedral configuration with tetradentate schiff base cobalt(II), DMSO or pyridine and oxygen, and the mole ratio of oxygen to cobalt(II) complexes are 1:2. The redox processes, were investigated for Co(SEDT) and Co(ο-BSD) complexes in 0.1M TEAP-DMSO and 0.1M TEAP-pyridine by cyclic voltammetry with glassy carbon electrode. As a result the redox processes of Co(II)/Co(III) and Co(II)/Co(I) found to be reversible or quasi-reversible for non uptake oxygen complexes but oxygen adduct complexes found to be irreversible processes and reaction processes of oxygen for oxygen adduct complexes are quasi-reversible process, the potential range was $E_{pc}=-0.85{\sim}-1.19V\;and\;E_{pa}=-0.74{\sim}-0.89V$.

  • PDF

Analysis on Distribution Characteristics of Spent Fuel in Electrolytic Reduction Process (전해환원 공정에서의 사용후핵연료 분배 특성 분석)

  • Park, Byung Heung;Lee, Chul Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.696-701
    • /
    • 2012
  • Non-aqueous processes have been developed for stable management and reuse of spent fuels. Nowadays, a plan for the management of spent fuel is being sought focusing on a non-aqueous process in Korea. Named as pyroprocessing, it includes an electrolytic reduction process using molten salt at high temperature for the spent fuels, which provides metallic product for a following electro-refining process. The electrolytic reduction process utilizes electrochemical reaction producing Li to convert oxides into metals in high temperature LiCl medium. Various kinds of elements in the spent fuels would be distributed in the system according to their respective reactivity with the reductant, Li, and the medium, LiCl. This study elucidates the reactions of the elements to understand the behavior of composite elements on the spent fuels by thermodynamic calculations. Uranium and transuranic are reduced into their metallic forms while rare-earth oxides, except for Eu, are stable against the reaction at a process temperature. This study also covers the tendency of reactions with respect to the temperature and, finally, estimates radioactivity and heat load on the distributed phases based on the reference spent fuel characteristics.

Resistive Switching Characteristic of Direct-patternable Amorphous TiOx Film by Photochemical Metal-organic Deposition (광화학증착법에 의한 직접패턴 비정질 TiOx 박막의 제조 및 저항변화 특성)

  • Hwang, Yun-Kyeong;Lee, Woo-Young;Lee, Se-Jin;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.25-29
    • /
    • 2020
  • This study demonstrates direct-patternable amorphous TiOx resistive switching (RS) device and the fabrication method using photochemical metal-organic deposition (PMOD). For making photosensitive stock solutions, Ti(IV) 2-ethylhexanoate was used as starting precursor. Photochemical reaction by UV exposure was observed and analyzed by Fourier transform infrared spectroscopy and the reaction was completed within 10 minutes. Uniformly formed 20 nm thick amorphous TiOx film was confirmed by atomic force microscopy. Amorphous TiOx RS device, formed as 6 × 6 ㎛ square on 4 ㎛ width electrode, showed forming-less RS behavior in ±4 V and on/off ratio ≈ 20 at 0.1 V. This result shows PMOD process could be applied for low temperature processed ReRAM device and/or low cost, flexible memory device.

A Study on Catalytic Activity of Oxygen Reduction Reaction and Performance of PEMFC using Pt/C Synthesized by Modified Polyol (수정된 폴리올법으로 합성된 Pt/C를 이용한 산소환원반응성 및 고분자전해질 연료전지 성능 연구)

  • Yang, Jongwon;Chu, Cheonho;Kwon, Yongchai
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.157-162
    • /
    • 2014
  • In this research, we investigate electrical performance and electrochemical properties of carbon supported Pt (Pt/C) that is synthesized by polyol method. With the Polyol_Pt/C that is adopted for oxygen reduction reaction (ORR) as cathode of proton exchange membrane fuel cells (PEMFCs), their catalytic activity and ORR performance and electrical performance are estimated and compared with commercial Pt/C(Johnson Mattey) catalyst. Their electrochemically active surface (EAS) area are measured by cyclic voltammetry (CV), respectively. On the other hand, regarding ORR activity and electrical performance of the catalysts, (i) linear sweeping voltammetry by rotating disk electrode and (ii) PEMFC single cell tests are used. The CV measurement demonstrate EAS of Polyol_Pt/C is compared with commercial JM_Pt/C. In case of Polyol_Pt/C, its half-wave potential, kinetic current density are excellent. Based on data obtained by half-cell test, when PEMFC single cell tests are carried out, current density measured at 0.6V and maximum power density of the PEMFC single cell employing Polyol_Pt/C are better than those employing commercial Pt/C. Conclusively, Polyol_Pt/C synthesized by modified polyol process shows better ORR catalytic activity and PEMFC performance than other catalysts.

A Study on Poisoning of the Reforming Catalysts on the Position of Anode in the Direct Internal Reforming Molten Carbonate Fuel Cell (직접 내부개질형 용융탄산염 연료전지의 음극판 위치에 따른 개질 촉매 피독에 관한 연구)

  • Wee, Jung Ho;Chun, Hai Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.652-659
    • /
    • 1999
  • The trend of poisoning of reforming catalyst along with the position of anodic catalyst bed was studied. Keeping the conditions that steam to carbon ratio was 2.5, operating voltage was 0.75 V, current density was $140mA/cm^2$, the unit cell was operated during 24 hrs at a steady state. And then the cell was stopped, the catalysts packed in the position of inlet, middle and outlet were sampled individually and then the amount of carbon, Li and K poisoned were analysed. After 100 hrs operated, the catalysts at the same positions were analysed at the same manner. The result of this experiment was as followings. After 24 hrs operated, the poisoning amounts of Li and K in the catalyst were 0.27 wt% at inlet, 0.23 wt% at middle and the highest value 1.59 wt% at outlet. After 100 hrs, the amount of poisoning is the highest in the catalyst packed at the inlet of unit cell. The performance simulation of unit cell explained these trends of poisoning catalysts. The simulation told that the catalyst in the region of the inlet of unit cell treated the 90% of initial methane flow rate and the highest electrochemical reaction happened in this region. So the catalysts of this region were the most poisoned with carbon, Li and K and also the rate of poisoning is faster than that of the catalyst at other regions. The temperature at the region of outlet of unit cell was $30^{\circ}C$ higher than that of other regions, so more Li, and K vaporized than at other regions and little reforming reaction at this region made the catalysts poisoning rate low.

  • PDF