• Title/Summary/Keyword: electrochemical measurements

Search Result 401, Processing Time 0.029 seconds

On eliminating electrochemical impedance signal noise using Li metal in a non-aqueous electrolyte for Li ion secondary batteries

  • Park, Chul-Wan
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.180-183
    • /
    • 2011
  • Li metal is accepted as a good counter electrode for electrochemical impedance spectroscopy (EIS) as the active material in Li-ion and Li-ion polymer batteries. We examined the existence of signal noise from a Li-metal counter quantitatively as a preliminary study. We suggest an electrochemical cell with one switchable electrode to obtain the exact impedance signal of active materials. To verify the effectiveness of the switchable electrode, EIS measurements of the solid electrolyte interphase (SEI) before severe $Li^+$ intercalation to SFG6 graphite (at > ca. 0.25 V vs. Li/$Li^+$) were taken. As a result, the EIS spectra without the signal of Li metal were obtained and analyzed successfully for the following parameters i) $Li^+$ conduction in the electrolyte, ii) the geometric resistance and constant phase element of the electrode (insensitive to the voltage), iii) the interfacial behavior of the SEI related to the $Li^+$ transfer and residence throughout the near-surface (sensitive to voltage), and iv) the term reflecting the differential limiting capacitance of $Li^+$ in the graphite lattice.

High sensitivity biosensor for mycotoxin detection based on conducting polymer supported electrochemically polymerized biopolymers

  • Dhayal, Marshal;Park, Gye-Choon;Park, Kyung-Hee;Gu, Hal-Bon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.243.1-243.1
    • /
    • 2010
  • Devices based on nanomaterials platforms are emerging as a powerful tool for ultrasensitive sensors for the direct detection of biological and chemical species. In this talk, we will report the preparation and the full characterization of electrochemical polymerization of biopolymers platforms and nano-structure formation for electrochemical detection of enzymatic activity and toxic compound in electrolyte for biosensor applications. Formation of an electroactive polymer film of two different compounds has been quantified by observing new redox peak at higher potentials in cyclic voltammogram measurements. RCT value of at various biopolymer concentration based hybrid films has been obtained from electrochemical impedance spectroscopy analysis and possible mechanism for formation of complexes during electrochemical polymerization on conducting substrates has been investigated. Biosensors developed based on these hybrid biopolymers have very high sensitivity.

  • PDF

Preparation of Tantalum Anodic Oxide Film in Citric Acid Solution - Evidence and Effects of Citrate Anion Incorporation

  • Kim, Young-Ho;Uosaki, Kohei
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.163-170
    • /
    • 2013
  • Tantalum anodic oxide film was prepared in citric acid solution of various concentrations and the prepared Ta anodic oxide film was characterized by various electrochemical techniques and X-ray photoelectron spectroscopy (XPS). The prepared Ta anodic oxide film showed typical n-type semiconducting properties and the dielectric properties were strongly dependent on the citric acid concentration. The variation of electrochemical and electronic properties was explained in terms of electrolyte anion incorporation into the anodic oxide film, which was supported by XPS measurements.

Study on Electrochemical Property of Self-Assembled Viologen Monolayers Using Electrochemical Quartz Crystal Microbalance (EQCM) Method (EQCM법을 이용한 자기조립된 Viologen 단분자막의 전기화학적 특성 연구)

  • Lee, Dong-Yun;Park, Sang-Hyun;Park, Jae-Chul;Kwon, Young-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.107-110
    • /
    • 2006
  • We fabricated the monolayers onto QCM by self-assembly using viologen, which has been widely used as electron acceptor. A gold electrode of the QCM was cleaned by piranha solution and prepared the ethanol-acetonitrile(1:1) solution with 2 m mol/l viololgen compounding of pure hi gas. We determined the time dependence to resonant frequency shift during self-assembly process and the electrochemical behavior of the self-assembled viologen monolayers by cyclic voltammetry. With increasing scan rate, the redox peak current of the viologen increased linearly. This was signified that the redox reaction was reversible. The EQCM measurements revealed the anions transfer during redox reactions, respectively. From the EQCM data, the well-defined shape peaks were nearly equal charges by cyclic voltammetry.

Preparation and Electrochemical Properties of Carbon Cryogel for Supercapacitor

  • Song, Min-Seob;Nahm, Sahn;Oh, Young-Jei
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.662-666
    • /
    • 2008
  • Electrochemical properties of carbon cryogel electrode for the application of composite electrode materials mixed with metal oxide in supercapacitor have been studied. Carbon cryogels were synthesized by sol-gel polycondensation of resorcinol with form aldehyde, followed by a freeze drying, and then pyrolysis in an inert atmosphere. Physical properties of carbon cryogel were characterized by BET, X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that carbon cryogel is amorphous material. The electrochemical properties of carbon cryogel were measured by cyclic voltammetry as a function of concentration of liquid electrolyte, galvanostatic charge-discharge with different scan rates and electrochemical impedance measurements. The result of cyclic voltammetry indicated that the specific capacitance value of a carbon cryogel electrode was approximately 150.2 F/g (at 5 mV/s in 6M KOH electrolyte).

Voltammetric Analysis on a Disposable Microfluidic Electrochemical Cell

  • Chand, Rohit;Han, Dawoon;Kim, Yong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1175-1180
    • /
    • 2013
  • A microfabricated electrochemical cell comprising PDMS-based microchannel and in-channel gold microelectrodes was fabricated as a sensitive and a miniature alternative to the conventional electroanalytical systems. A reproducible fabrication procedure enabled patterning of multiple microelectrodes integrated within a PDMS-based fluidic network. The active area of each electrode was $200{\mu}m{\times}200{\mu}m$ with a gap of $200{\mu}m$ between the electrodes which resulted in a higher signal to noise ratio. Also, the PDMS layer served the purpose of shielding the electrical interferences to the measurements. Analytes such as potassium ferrocyanide; amino acid: cysteine and nucleoside: guanosine were characterized using the fabricated cell. The microchip was comparable to bulk electrochemical systems and its applicability was also demonstrated with flow injection based rapid amperometric detection of DNA samples. The device so developed shall find use as a disposable electrochemical cell for rapid and sensitive analysis of electroactive species in various industrial and research applications.

Estimate of Current Density Distribution in Electroforming Process Using Finite Element Analysis (유한요소해석을 이용한 전주공정에서의 전류밀도 분포 예측)

  • 강대철;김헌영;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.279-284
    • /
    • 2004
  • Electroforming is the highly specialized use of electrodeposition for the manufacture of metal parts and basically a specialized form of electroplating. So, we can apply electrochemical system analysis for electroforming process. Electrochemical systems are concerned with the interplay between electricity and chemistry, namely the measurements of electrical quantities, such as current density, potential, and charge, and their relationship to chemical parameters. This paper based on the basic equations of electrics and electrochemical kinetics, was employed for a theoretical explanation of the current density distribution on electroforming process. We calculated current density distribution and potential distribution on cathode. Also, calculated current density distribution of vertical direction. It was shown that current density is related with distance of between anode and cathode and mass transfer process.

Corrosion Inhibition of Mild Steel in Acidic Medium by Jathropha Curcas Leaves Extract

  • Odusote, Jamiu K.;Ajayi, Olorunfemi M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.81-87
    • /
    • 2013
  • Inhibition of corrosion of mild steel in sulphuric acid by acidic extract of Jatropha Curcas leaves has been studied using weight loss and thermometric measurements. It was found that the leaves extract act as a good corrosion inhibitor for mild steel in all concentrations of the extract. The inhibition action depends on the concentration of the Jatropha Curcas leaves extract in the acid solution. Results for weight loss and thermometric measurements indicate that inhibition efficiency increase with increasing inhibitor concentration. The adsorption of Jatropha curcas leaves extract on the surface of the mild steel specimens obeys Langmuir adsorption isotherm. Based on the results, Jatropha curcas leaves extract is recommended for use in industries as a replacement for toxic chemical inhibitors.

Effects of Texture on the Electrochemical Properties of Single Grains in Polycrystalline Zinc

  • Park, Chan-Jin;Lohrengel, Manuel M.;Hamelmann, Tobias;Pllaski, Milan;Kwon, Hyuk-Sang
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.54-58
    • /
    • 2004
  • Effects of texture on the electrochemical behaviors of single grains in polycrystalline zinc were investigated using a capillary-based micro-droplet cell. Pontiodynamic sweeps and capacity measurements were carried out in pH 9 borate buffer solution. The cyclic voltammograms and the capacity measurements on single grains with different crystallographic orientations in polycrystalline Zn showed a strong dependence of oxide growth on crystallographic grain orientation. The total charge consumed for oxide formation and the inverse capacity increased with an increase of surface packing density of grain. suggesting the oxide formation was greater on grains with higher surface packing density.

Electrochemical Lithium Insertion/Extraction for Carbonaceous Thin Film Electrodes in Propylene Carbonate Solution

  • Fukutsuka, Tomokazu;Abe, Takeshi;Inaba, Minoru;Ogumi, Zempachi;Matsuo, Yoshiaki;Sugie, Yosohiro
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.129-132
    • /
    • 2001
  • Carbonaceous thin films were prepared from acetylene and argon gases by plasma assisted chemical vapor deposition (Plasma CVD) at 873 K. The carbonaceous thin films were characterized by mainly Raman spectroscopy, and their electrochemical properties were studied by cyclic voltammetry and charge-discharge measurements in propylene carbonate (PC) solution. Raman spectra showed that crystallinity of carbonaceous thin films is correlated by the applied RF power. The difference of the applied RF power also affected on the results of cyclic voltammetry and charge-discharge measurements. In PC solution, intercalation and de-intercalation of lithium ion can occur as well as in the mixed solution of EC and DEC.

  • PDF