• Title/Summary/Keyword: electrochemical discharge

Search Result 796, Processing Time 0.023 seconds

Electrochemical Performance of Carbon/Silicon Composite as Anode Materials for High Capacity Lithium Ion Secondary Battery

  • Kim, Taek-Rae;Wu, Jing-Yu;Hu, Quan-Li;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.335-339
    • /
    • 2007
  • Carbon/silicon composites were synthesized by mixing silicon powders with petroleum pitch and subsequent heat-treatment. The resultant composites were composed of carbon and nano-size crystalline silicon identified by XRD and EDX. FIB images and SEM images were taken respectively to detect the existence of silicon impregnated in carbon and the distribution of silicon on the carbon surface. The obtained carbon/silicon materials were assembled as half cell anodes for lithium ion secondary battery and their electrochemical properties were tested. The pitch/silicon composite (3 : 1 wt. ratio) heat treated at $1000^{\circ}C$ and mixed with 55.5 wt.% of graphite showed relatively good electrochemical properties such as the initial efficiency of 78%, the initial discharge capacity of 605 mAh/g, and the discharge capacity of 500 mAh/g after 20 cycles.

The Effect of Surface Modification with La-M-O (M = Ni, Li) on Electrochemical Performances of Li[Ni0.8Co0.15Al0.05]O2 Cathode

  • Ryu, Jea-Hyeok;Kim, Seuk-Buom;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.657-660
    • /
    • 2009
  • The surface of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ cathode particle was modified by lanthanum based oxide to improve electrochemical property and thermal stability. The XRD pattern of surface layer was indexed with that of $La_4NiLiO_8$. The discharge capacity of modified electrode was higher than that of pristine sample, specially at fast charge-discharge rate and high cut-off voltage. In the DSC profile of the charged sample, the generation of heat by exothermic reaction was decreased by surface modification. Such enhancement may by attributed to the presence of stable lanthanum based oxide, which effectively suppressd the reaction between electrode and electrolyte on the surface of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ electrode.

Electrochemical Properties of LixCoyNi1-yO2 Prepared by Citrate Sol0Gel Method

  • 장순호;강성구;장기호
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.61-65
    • /
    • 1997
  • The electrochemical properties of LixCoyNi1-yO2 compounds (y=0.1, 0.3, 0.5, 0.7, 1.0) prepared by citrate sol-gel method have been investigated. The LixCoyNi1-yO2 compounds were annealed at 850 ℃ for 20 h after preheating at 650 ℃ for 6 h, in air. The x-ray diffraction (XRD) patterns for LixCoyNi1-yO2 have shown that these compounds have a well developed layered structure (R&bar{3} m). From the scanning electron microscopy of LixCoyNi1-yO2, particle size was estimated less than 5 μm. The Li//LixCoyNi1-yO2 electrochemical cell consists of Li metal anode and 1 M LiClO4-propylene carbonate (PC) solution as the electrolyte. The differences in intercalation rate of the LixCoyNi1-yO2 in the first charge/discharge cycle were less than 0.05 e-. The first discharge capacities of LixCoO2 and LixCo0.3Ni0.7O2 were ∼130 mAh/g and ∼160 mAh/g, respectively.

Physicochemical and Electrochemical Characteristics of Carbon Nanomaterials and Carbon Nanomaterial-Silicon Composites

  • Kim, Soo-Jin;Hyun, Yura;Lee, Chang-Seop
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.299-309
    • /
    • 2016
  • In this study, the physicochemical and electrochemical properties of carbon nanomaterials and synthesized nano-carbon/Si composites were studied. The nano-carbon/Si composites were ball-milled to a nano size and coated with pyrolytic carbon using Chemical Vapor Deposition (CVD). They were then finely mixed with respective nano-carbon materials. The physicochemical properties of samples were analyzed using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Raman spectroscopy, X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and surface area analyzer. The electrochemical characteristics were investigated using the galvanostatic charge-discharge and cyclic voltammetry (CV) measurements. Three-electrode cells were fabricated using the carbon nanomaterials and nano-carbon/Si composites as anode materials and LiPF6 and LiClO4 as electrolytes of Li secondary batteries. Reversibility using LiClO4 as an electrolyte was superior to that of LiPF6 as the electrolyte. The initial discharge capacities of nano-carbon/Si composites were increased compared to the initial discharge capacities of nano-carbon materials.

The correlation of the eletrochemical properties for $Li[Li_yMn_{2-y}]O_4$ cathode materials ($Li[Li_yMn_{2-y}]O_4$ 정극 활물질에 대한 전기화학적 특성의 상호관계)

  • Jeong, In-Seong;Kim, Min-Sung;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.269-272
    • /
    • 2000
  • Spinel $LiMn_2O_4$ samples are prepared by heating a $LiOH{\cdot}H_2O/MnO_2$ mixture in air at $800^{\circ}C$ for 36h, and their structure and electrochemical performance are studied by using X-ray diffraction, Cyclic Voltammetry, AC Impedance, and Charge-discharge measurements. It was found that the electrochemical properties of the $LiMn_2O_4$ samples are very sensitive to substituted volume of lithium. Initial impedances of all cathode was similar. Initial resistance was $60{\sim}70{\Omega}$. Reaction peak of Cyclic voltammetry was weak by increase of substituted volume of lithium. $Li[Li_{0.08}Mn_{1.92}]O_4$ and $Li[Li_{0.1}Mn_{1.9}]O_4$ cathode materials showed the charge and discharge capacity of about 125mAh/g at first cycle, and about 95mAh/g after 70th cycle. It showed excellent property in sample revealed good structure and other electrochemical property.

  • PDF

Effect of Preparation Parameters of Sulfur Cathodes on Electrochemical Properties of Lithium Sulfur Battery

  • Zhao, Xiaohui;Kim, Dul-Sun;Ahn, Hyo-Jun;Kim, Ki-Won;Jin, Chang-Soo;Ahn, Jou-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.169-174
    • /
    • 2010
  • Sulfur cathodes were prepared by ball milling method with different types of electronic conductors and binders in different ball milling time. The sulfur cell with a cathode prepared in 45 min ball milling time gave an initial discharge capacity of 794mAh/g with Super-P as an electronic conductor and poly(vinylidene fluoride) as a binder. The cathode with multi-walled carbon nanotube as an electronic conductor showed an initial discharge capacity of 944 mAh/g and a discharge capacity of 300 mAh/g after 20 cycles. Cathodes with poly(ethylene oxide) and poly(vinylidene fluoride) as binders showed different cycle performance.

SiO2/styrene butadiene rubber-coated poly(ethylene terephthalate) nonwoven composite separators for safer lithium-ion batteries

  • Lee, Jung-Ran;Won, Ji-Hye;Lee, Sang-Young
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2011
  • We develop a new nonwoven composite separator for a safer lithium-ion battery, which is based on coating of silica ($SiO_2$) colloidal particles/styrene-butadiene rubber (SBR) binder to a poly(ethylene terephthalate) (PET) nonwoven support. The $SiO_2$ particles are interconnected by the SBR binder and closely packed in the nonwoven composite separator, which thus allows for the development of unusual porous structure, i.e. highly-connected interstitial voids formed between the $SiO_2$ particles. The PET nonwoven serves as a mechanical support that contributes to suppressing thermal shrinkage of the nonwoven composite separator. The $SiO_2$/SBR content in the nonwoven composite separators plays an important role in determining their separator properties. Porous structure, air permeability, and electrolyte wettability of the nonwoven composite separators, in comparison to a commercialized polyethylene (PE) separator, are elucidated as a function of the $SiO_2$/SBR content. Based on this understanding of the nonwoven composite separators, the effect of $SiO_2$/SBR content on the electrochemical performances such as self-discharge, discharge capacity, and discharge C-rate capability of cells assembled with the nonwoven composite separators is investigated.

Synthesis of Li2Mn3O7 and Application to Hybrid Capacitor

  • Kim, Hun-Uk;Shin, Kyoung-Hee;Lee, Bum-Suk;Jeon, Myung-Seok;Jung, Kyu-Nam;Sun, Yang-Kook;Jin, Chang-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.97-101
    • /
    • 2010
  • In order to apply hybrid capacitor, $Li_2Mn_3O_7$ was synthesized by combustion method using $LiNO_3$, $Li(CH_3COO){\cdot}2H_2O$ and $Mn(CH_3COO){\cdot}4H_2O$. Spinel pattern was identified the samples calcined over $400^{\circ}C$ in XRD. Intensity of $Mn_2O_3$ peak increased as the calcination temperature increased. To decide n/p ratio and to investigate electrochemical properties, charge-discharge tests of Li/$Li_2Mn_3O_7$ and Li/AC half-cell were carried out. Applying to AC/$Li_2Mn_3O_7$ hybrid capacitor, it had high discharge capacitance of 32.8 F/cc at 100 mA/g.

Electrochemical Properties of Li[Ni0.2Li0.2Mn0.6]O2 by Microwave-assisted Sol-gel Method

  • Park, Yong-Joon;Kim, Seuk-Buom
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.102-105
    • /
    • 2009
  • $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ cathode materials have been synthesized by a microwave-assisted sol-gel method. The structure and electrochemical properties of $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ were studied by X-ray difftactometry (XRD), scanning electron microscopy (SEM) and charge-discharge cycler. The powder prepared by microwave assisted sol-gel method showed good crystallinity and well-defined facet shapes. The $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ electrode delivered a high discharge capacity of 230 $mAhg^{-1}$ at the specific current of 40 $mAg^{-1}$ (0.2 C rate) in the voltage range of 2.0${\sim}$4.8 V. About 60 % of the discharge capacity measured at 0.2 Crate (140 $mAhg^{-1}$) was maintained at a 6 C (1200 $mAg^{-1}$)rate. The cyclic property was also stable and it did not deteriorated at a high Crate.

The Experiment on the effect of variations of voltage frequency and duty r on the electrochemical discharge machining of Pyrex glass (전압 주파수와 파형 폭 변화에 따른 유리의 미세 전해 방전 가공 성능에 대한 실험)

  • Lee, Jung-Yong;Ahn, Yoo-Min;Ahn, Si-Hong;Park, Chi-Hyun;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3307-3309
    • /
    • 1999
  • Electrochemical discharge machining (ECDM) is a very recent technique in the fabrication of the micro-electro-mechanical system ( MEMS ) devices. This paper presents the experimental results of the machining of micro-holes on pyrex glass substrates by use of ECDM. Electrolyte is used with a KOH aqueous solution, cathode with copper, anode with platinum, and tool feed system is applied with gravity feed system. Already established experimental results were taken under the condition of constant voltage frequency. However in this paper, the effect of variation of the voltage frequency and duty ratio is considered. In this experiment, it is measured the ECDM performances with variation of the voltage frequency and duty ratio under the conditions of constant other machining variables. ECDM performances are described by the hole depth, and the top hole diameter.

  • PDF