• 제목/요약/키워드: electrochemical discharge

검색결과 796건 처리시간 0.032초

Preparation and Electrochemical Properties of Carbon Cryogel for Supercapacitor

  • Song, Min-Seob;Nahm, Sahn;Oh, Young-Jei
    • 한국세라믹학회지
    • /
    • 제45권11호
    • /
    • pp.662-666
    • /
    • 2008
  • Electrochemical properties of carbon cryogel electrode for the application of composite electrode materials mixed with metal oxide in supercapacitor have been studied. Carbon cryogels were synthesized by sol-gel polycondensation of resorcinol with form aldehyde, followed by a freeze drying, and then pyrolysis in an inert atmosphere. Physical properties of carbon cryogel were characterized by BET, X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that carbon cryogel is amorphous material. The electrochemical properties of carbon cryogel were measured by cyclic voltammetry as a function of concentration of liquid electrolyte, galvanostatic charge-discharge with different scan rates and electrochemical impedance measurements. The result of cyclic voltammetry indicated that the specific capacitance value of a carbon cryogel electrode was approximately 150.2 F/g (at 5 mV/s in 6M KOH electrolyte).

Effects of phosphorus content and operating temperature on the electrochemical performance of phosphorus-doped soft carbons

  • Kim, Eun Hee;Jung, Yongju
    • Carbon letters
    • /
    • 제15권4호
    • /
    • pp.277-281
    • /
    • 2014
  • A series of high capacity soft carbons with different phosphorus contents were successfully prepared by carbonizing petroleum cokes treated with hypophosphorous acid at $900^{\circ}C$. The effect of phosphorus content on the electrochemical performance of the soft carbons was extensively investigated. The P-doped soft carbons exhibited greatly enhanced discharge capacities and outstanding rate capabilities with increasing phosphorus content. In addition, the influence of temperature on the electrochemical behaviors of the soft carbons was investigated in a wide temperature range of $25^{\circ}C$ to $50^{\circ}C$. Surprisingly, the electrochemical properties of the pristine and P-doped soft carbons were highly sensitive to the operating temperature, unlike conventional graphite. The pristine and P-doped soft carbons exhibited significantly high discharge capacities of 470 and 522 mAh/g, respectively, at a high temperature of $50^{\circ}C$.

Quantitative estimation of reversibility of the discharge process undergone by nickel hydroxide film cathodically deposited on pure nickel as a positive supercapacitor electrode using cyclic voltammetry and potential drop method

  • Pyun Su-Il;Moon Sung-Mo
    • 전기화학회지
    • /
    • 제1권1호
    • /
    • pp.8-13
    • /
    • 1998
  • This work presents the way how to evaluate the degree of reversibility of the discharging process undergone by the nickel hydroxide film cathodically deposited on pure nickel as a positive electrode for electrochemical capacitor using the combined cyclic voltammetry and potential drop method, supplemented by galvanostatic discharge and open-circuit potential transient methods. The time interval necessary just to establish the current reversal of anodic to cathodic direction from the moment just after applying the potential inversion of anodic to cathodic direction, was obtained on cyclic voltammogram. The cathodic charge density passed upon dropping the applied potential, was calculated on potentiostatic current density-time curve. Both the time interval and the cathodic charge density in magnitude can be regarded as being measures of the degree of reversibility of the discharging process undergone by the positive active material for supercapacitor, i.e. , the longer the time interval is, the lower is the degree of reversibility and the greater the cathodic charge density is, the higher is the degree of reversibility. From the applied potential dependences of the time interval and cathodic charge density, discharge at $0.42 V_{SCE}$ was determined to be the most reversible.

Zr계 라-베상 수소저장합금의 전기화학적 충·방전특성 (Electrochemical Charge and Discharge Characteristics of Zr-Based Laves Phase Hydrogen Storage Alloys)

  • 이재명;김찬중;김대룡
    • 한국수소및신에너지학회논문집
    • /
    • 제5권2호
    • /
    • pp.99-109
    • /
    • 1994
  • To develop high capacity hydrogen storage alloys for secondary Ni/MH batteries, electrochemical charge/discharge characteristics of $Zr_{1-x}Ti_xMn_{1-y}V_yNi_{1-z}M_z$ (M=Al,Co,Fe) alloys were investigated, in which $0.2{\leq}x{\leq}0.6$, $0.2{\leq}y{\leq}0.8$, $0.2{\leq}z{\leq}0.4$. With increasing Ti content(x) and/or decreasing V content(y), lattice constants and maximum theoretical capacities of the alloys were decreased and equilibrium pressure of hydrogen absorption were increased. Electrochemical discharge capacities were increased with increasing Ti content(x). Especially, the alloys of x= 0.4~0.6 showed better charge/discharge efficiencies than those of x<0.4. Discharge capacities of $Zr_{0.4}Ti_{0.6}Mn_{0.4}V_{0.6}Ni_{0.8}Fe_{0.2}$, $Zr_{0.4}Ti_{0.6}Mn_{0.4}V_{0.6}Ni_{0.8}Al_{0.2}$ and $Zr_{0.5}Ti_{0.5}Mn_{0.4}V_{0.6}Ni_{0.6}Co_{0.4}$ were 385, 328 and 333mAh/g, respectively. These alloys were fully activated within five charge/discharge cycles and had a good charge and discharge rate capabilities and temperature characteristics.

  • PDF

Electrochemical Behavior of Li4Ti5O12/CNT Composite for Energy Storage

  • Kim, Hong-Il;Yang, Jeong-Jin;Kim, Han-Joo;Osaka, Tetsuya;Park, Soo-Gil
    • 전기화학회지
    • /
    • 제13권4호
    • /
    • pp.235-239
    • /
    • 2010
  • The $Li_4Ti_5O_{12}$/CNT composite is prepared by ultrasound associated sol-gel method. The prepared composite is characterized by SEM, TEM, XRD and TG analysis, and their electrochemical behaviors are investigated by cyclic voltammetry, electrochemical impedance spectroscopy and charge-discharge test in 1M $LiBF_4$/PC electrolyte. From the results, it is identified that the $Li_4Ti_5O_{12}$ nanoparticles coated on CNT surface have regular size with around 10~30 nm and spinel-framework structure. At the current rate of 20C, the discharge capacities of $Li_4Ti_5O_{12}$/CNT composites with CNT contents of 15, 30 and 50 wt% are 57, 63 and $48mAhg^{-1}$, respectively, which have similar value. The improved electrochemical behavior of the $Li_4Ti_5O_{12}$/CNT composite electrode is attributed to the addition of CNT with electronic conductivity.

수성(水性)펜침방전(針放電)의 전기화학적(電氣化學的) 특성(特性) (Electrochemical Characteristics of a Water-Pen Point Discharge in Atmosphere)

  • 이대희;김진규;문재덕
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1378-1381
    • /
    • 1995
  • Some interesting electrochemical characteristics of waterpen point-to-plate airgaps for dc and ac powers have been investigated at room atmosphere in a metal chamber. It is found that the ac discharge on the Pt point generated much ozone, while the negative do discharge on the waterpen point generated the highest ozone. And, the ac discharges of the waterpen point and the Pt point produced a little $NO_x$. But the dc discharge of the Pt point and waterpen point did not generated $NO_x$ anyway. As a result, it could be said that the water on the pen point acts something to generate ozone and $NO_x$ in room atmosphere.

  • PDF

Synthesis of Silicon-Carbon by Polyaniline Coating and Electrochemical Properties of the Si-C|Li Cell

  • Doh, Chil-Hoon;Kim, Seong Il;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay Hyeok;Min, Byung Chul;Moon, Seong-In;Yun, Mun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권8호
    • /
    • pp.1175-1180
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of polyaniline (PAn) coated on silicone powder. The physical and electrochemical properties of the Si-C composites were characterized by particle-size analysis, X-ray diffraction, scanning electron microscopy, and battery electrochemical tests. The average particle size of Si was increased by the coating of Pan but somewhat reduced by the carbonization to give silicone-carbon composites. The co-existence of crystalline silicone and amorphous-like carbon was confirmed by XRD analyses. SEM photos showed that the silicone particles were well covered with carbonaceous materials, depending on the PAn content. Si-C$\mid$Li cells were fabricated using the Si-C composites and tested using galvanostatic charge-discharge. Si-C$\mid$Li cells gave better electrochemical properties than Si|Li cells. Si-C$\mid$Li cells using Si-C from HCl-undoped precursor PAn showed better electrochemical properties than precursor PAn doped in HCl. The addition of an electrolyte containing 4-fluoroethylene carbonate (FEC) increased the initial discharge capacity. Also, another electrochemical test, the galvanostatic charge-discharge test with GISOC (gradual increasing of the state of charge) was carried out. Si-C(Si:PAn = 50:50 wt. ratio)|Li cell showed 414 mAh/g of reversible specific capacity, 75.7% of IIE (initial intercalation efficiency), 35.4 mAh/g of IICs (surface irreversible specific capacity).

Optimization of Lithium in Li1+x[Mn0.720Ni0.175Co0.105]O2 as a Cathode Material for Lithium Ion Battery

  • Kim, Jeong-Min;Jeong, Ji-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권2호
    • /
    • pp.97-102
    • /
    • 2011
  • Different amounts of excess lithium in the range of x = 0~0.3 were added to $Li_{1+x}[Mn_{0.720}Ni_{0.175}Co_{0.105}]O_2$ cathode materials synthesized using the co-precipitation method to investigate its microstructure and electrochemical properties. Pure layered structure without impurities was confirmed in the XRD pattern analysis and increasing peak intensity of $Li_2MnO_3$ was observed along with the addition of over 0.2 mol Li. The initial discharge capacity of the stoichiometric composition was determined to be 246 mAh/g, while the discharge capacity of the addition of 0.1 mol Li was obtained to be 241 mAh/g, which was not significantly different from that of the stoichiometric composition. However, the discharge capacities decreased dramatically after the addition of 0.2 and 0.3 mol Li to 162 mAh/g and 146 mAh/g, respectively. In the rate capability test, the active $Li_{1+x}[Mn_{0.720}Ni_{0.175}Co_{0.105}]O_2$ cathode material of the stoichiometric composition showed a dramatic decrease in its discharge capacity with increasing C-rate, as evidenced by the result that the discharge capacity at 5C was 13% compared with 0.1C. On the other hand, the discharge capacity of compositions containing excess lithium was improved at higher current rates. The cycling test showed that the composition containing an excess of 0.1 mol Li had the most outstanding capacity retention.