Browse > Article
http://dx.doi.org/10.5714/CL.2014.15.4.277

Effects of phosphorus content and operating temperature on the electrochemical performance of phosphorus-doped soft carbons  

Kim, Eun Hee (Department of Chemical Engineering, Korea University of Technology and Education)
Jung, Yongju (Department of Chemical Engineering, Korea University of Technology and Education)
Publication Information
Carbon letters / v.15, no.4, 2014 , pp. 277-281 More about this Journal
Abstract
A series of high capacity soft carbons with different phosphorus contents were successfully prepared by carbonizing petroleum cokes treated with hypophosphorous acid at $900^{\circ}C$. The effect of phosphorus content on the electrochemical performance of the soft carbons was extensively investigated. The P-doped soft carbons exhibited greatly enhanced discharge capacities and outstanding rate capabilities with increasing phosphorus content. In addition, the influence of temperature on the electrochemical behaviors of the soft carbons was investigated in a wide temperature range of $25^{\circ}C$ to $50^{\circ}C$. Surprisingly, the electrochemical properties of the pristine and P-doped soft carbons were highly sensitive to the operating temperature, unlike conventional graphite. The pristine and P-doped soft carbons exhibited significantly high discharge capacities of 470 and 522 mAh/g, respectively, at a high temperature of $50^{\circ}C$.
Keywords
soft carbons; hypophosphorous acid; phosphorus content; high temperature;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Jeong BO, Jeong SH, Park MS, Kim S, Jung Y. Synthesis of amorphous carbon materials for lithium secondary batteries. J Nanosci Nanotechnol, 14, 7788 (2014). http://dx.doi.org/10.1166/jnn.2014.9457.   DOI
2 Puziy AM, Poddubnaya OI, Socha RP, Gurgul J, Wisniewski M. XPS and NMR studies of phosphoric acid activated carbons. Carbon, 46, 2113 (2008). http://dx.doi.org/10.1016/j.carbon.2008.09.010.   DOI   ScienceOn
3 Jeong SH, Koh JY, Kim TJ, Jung Y. High-performance soft carbons prepared by treatment with various phosphorus acids. Bull Korean Chem Soc, 35, 2357 (2014). http://dx.doi.org/10.5012/bkcs.2014.35.8.2357.   과학기술학회마을   DOI
4 Zheng T, Xue JS, Dahn JR. Lithium insertion in hydrogen-containing carbonaceous materials. Chem Mater, 8, 389 (1996). http://dx.doi.org/10.1021/cm950304y.   DOI
5 Dahn JR, Zheng T, Liu Y, Xue JS. Mechanisms for lithium insertion in carbonaceous materials. Science, 270, 590 (1995). http://dx.doi.org/10.1126/science.270.5236.590.   DOI   ScienceOn
6 Lee YJ, Radovic LR. Oxidation inhibition effects of phosphorus and boron in different carbon fabrics. Carbon, 41, 1987 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00199-4.   DOI
7 Imamura R, Matsui K, Takeda S, Ozaki J, Oya A. A new role for phosphorus in graphitization of phenolic resin. Carbon, 37, 261 (1999). http://dx.doi.org/10.1016/S0008-6223(98)00172-9.   DOI   ScienceOn
8 Tatsumi K, Akai T, Imamura T, Zaghib K, Iwashita N, Higuchi S, Sawada Y. $^7Li$-nuclear magnetic resonance observation of lithium insertion into mesocarbon microbeads. J Electrochem Soc, 143, 1923 (1996). http://dx.doi.org/10.1149/1.1836926.   DOI
9 Jung Y, Singh N, Choi KS. Cathodic deposition of polypyrrole enabling the one-step assembly of metal-polymer hybrid electrodes. Angew Chem Int Ed Engl, 48, 8331 (2009). http://dx.doi.org/10.1002/anie.200903596.   DOI
10 Armand M, Tarascon JM. Building better batteries. Nature, 451, 652 (2008). http://dx.doi.org/10.1038/451652a.   DOI   ScienceOn
11 Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed, 47, 2930 (2008). http://dx.doi.org/10.1002/anie.200702505.   DOI   ScienceOn
12 Sato Y, Nagayama K, Sato Y, Takamura T. A promising active anode material of Li-ion battery for hybrid electric vehicle use. J Power Sources, 189, 490 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.11.112.   DOI
13 Kim I-S, Kumta PN. High capacity Si/C nanocomposite anodes for Li-ion batteries. J Power Sources, 136, 145 (2004). http://dx.doi.org/10.1016/j.jpowsour.2004.05.016.   DOI   ScienceOn
14 Wen ZS, Yang J, Wang BF, Wang K, Liu Y. High capacity silicon/ carbon composite anode materials for lithium ion batteries. Electrochem Commun, 5, 165 (2003). http://dx.doi.org/10.1016/S1388-2481(03)00009-2.   DOI   ScienceOn
15 Si Q, Hanai K, Imanishi N, Kubo M, Hirano A, Takeda Y, Yamamoto O. Highly reversible carbon-nano-silicon composite anodes for lithium rechargeable batteries. J Power Sources, 189, 761 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.08.007.   DOI   ScienceOn
16 Ng SH, Wang J, Wexler D, Konstantinov K, Guo ZP, Liu HK. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew Chem Int Ed, 45, 6896 (2006). http://dx.doi.org/10.1002/anie.200601676.   DOI   ScienceOn
17 Jo YN, Lee EY, Park MS, Hong KJ, Lee SI, Jeong HY, Lee Z, Oh SM, Kim YJ. A study on the $H_3PO_4$-treated soft carbon as anode materials for lithium ion batteries. J Korean Electrochem Soc, 15, 207 (2012). http://dx.doi.org/10.5229/JKES.2012.15.4.207.   과학기술학회마을   DOI   ScienceOn