• Title/Summary/Keyword: electro-osmotic

Search Result 48, Processing Time 0.02 seconds

Optical Tracking of Three-Dimensional Brownian Motion of Nanoparticles

  • Choi C. K.;Kihm K.D.
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.3-19
    • /
    • 2005
  • Novel optical techniques are presented for three-dimensional tracking of nanoparticles; Optical Serial Sectioning Microscopy (OSSM) and Ratiometric Total Internal Reflection Fluorescent Microscopy (R-TIRFM). OSSM measures optically diffracted particle images, the so-called Point Spread Function (PSF), and dotermines the defocusing or line-of-sight location of the imaged particle measured from the focal plane. The line-of-sight Brownian motion detection using the OSSM technique is proposed in lieu of the more cumbersome two-dimensional Brownian motion tracking on the imaging plane as a potentially more effective tool to nonintrusively map the temperature fields for nanoparticle suspension fluids. On the other hand, R-TIRFM is presented to experimentally examine the classic theory on the near-wall hindered Brownian diffusive motion. An evanescent wave field from the total internal reflection of a 488-nm bandwidth of an argon-ion laser is used to provide a thin illumination field of an order of a few hundred nanometers from the wall. The experimental results show good agreement with the lateral hindrance theory, but show discrepancies from the normal hindrance theory. It is conjectured that the discrepancies can be attributed to the additional hindering effects, including electrostatic and electro-osmotic interactions between the negatively charged tracer particles and the glass surface.

  • PDF

Research on One Dimensional Dynamic Model in Water Transportation of PEM Fuel Cell

  • Bakhtiar, Agung;You, Jin-Kwang;Park, Jong-Bum;Hong, Boo-Pyo;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.382-387
    • /
    • 2012
  • Water balance has a significant impact on the overall fuel cell system performance. Proper water management should provide an adequate membrane hydration and avoidance of water flooding in the catalyst layer and gas diffusion layer. Considering the important of advanced water management in PEM fuel cell, this study proposes a simple one dimensional water transportation model of PEM fuel cell for use in a dynamic condition. The model has been created by assumption that the output is the water liquid saturation difference. The liquid saturation change is the total difference between the additional water and the removal water on the system. The water addition is obtained from fuel cell reaction and the electro osmotic drag. The water removal is obtained from capillary transport and evaporation process. The result shows that the capillary water transport of low temperature fuel cell is high because the evaporation rate is low.

  • PDF

향류식 역삼투 농축공정을 이용한 NaCl 용액의 농축연구

  • 조한욱
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.04b
    • /
    • pp.3-10
    • /
    • 1997
  • 제염농축공정은 증류, 증발법을 일반적으로 사용하나, 에너지 절약차원에서 전기투석 (Electro dialysis)장치를 증발기 선단에 도입한 복합공정을 국내에서도 사용하고 있는 실정이다. 그러나, 전기투석장치는 전기적인 소모와 막의 재생, 교체처리비가 문제점이 되므로 역삼투 장치를 제염농축 공정 최선단에 도입한 복합공정을 이용할 경우 전기 투석 및 증발 복합공정에 비해 40%의 에너지 절감 효과를 기대할 수 있다. 이와 같은 장점에도 불구하고 역삼투 공정은 공급용액의 삼투압보다 큰 적용압력을 막표면에 가하여 물질분리를 수행하므로 농축공정에서 유발되는 배제액 농도의 상승은 삼투압의 증가를 일으켜 실적적용압력의 효과를 떨어뜨리게 되며 결과적으로 농축효과를 감소시키게 된다. 본 연구에서는 효과적인 염농축 공정을 위하여 막모듈 투과부에 고농도 삼투압 감소액(osmotic sink solution)을 향류식(막투과흐름을 맞받아치며 흐르는 방식)으로 유입시키는 향류식 역삼투 (counter-current reverse osmosis, CCRO) 나권형 모듈을 고안 제작하였으며, 제작된 모듈을 기존 역삼투 공정과 향류식 염삼투 공정에 적용하여 염농축도의 성능을 상호 비교하고 염농축에 관계되는 공급농도, 공급유량, 투과유량, 배제유량, 향류 유입유량, 압력구배, 삼투압차 및 농축단수 등의 인자들을 이용하여 두 공정에 대한 염농축 분리조작의 제반조건과 제작된 모듈 내의 농축관련 특성을 실험 및 수치적으로 비교, 고찰하였다.

  • PDF

Dynamic Model of Water Electrolysis for Prediction of Dynamic Characteristics of Cooling System (냉각계통 동적 예측을 위한 수전해 시스템 동적 모사 모델)

  • YUN, SANGHYUN;YUN, JINYON;HWANG, GUNYONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Water electrolysis technology, which generates hydrogen using renewable energy resources, has recently attracted great attention. Especially, the polymer electrolyte membrane water electrolysis system has several advantages over other water electrolysis technologies, such as high efficiency, low operating temperature, and optimal operating point. Since research that analyzes performance characteristics using test bench have high cost and long test time, however, model based approach is very important. Therefore, in this study, a system model for water electrolysis dynamics of a polymer electrolyte membrane was developed based on MATLAB/Simulink®. The water electrolysis system developed in this study can take into account the heat and mass transfer characteristics in the cell with the load variation. In particular, the performance of the system according to the stack temperature control can be analyzed and evaluated. As a result, the developed water electrolysis system can analyze water pump dynamics and hydrogen generation according to temperature dynamics by reflecting the dynamics of temperature.

Analysis on a Dynamic Model with One Dimension in Water Transportation of PEM Fuel Cell (PEM연료전지의 수분전달에 있어서 1차원 해석을 수행한 동적모델에 관한 연구)

  • Bakhtiar, Agung;Hong, Boo-Pyo;You, Jin-Kwang;Kim, Young-Bok;Yoon, Jung-In;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.118-123
    • /
    • 2012
  • Water balance has a significant impact on the overall fuel cell performance. Maintenance of proper water management should provide an adequate membrane hydration and avoidance of water flooding in the catalyst layer and gas diffusion layer. Considering the important of advanced water management in PEM fuel cell, this study proposes a simple one dimensional water transportation model of PEM fuel cell for use in a dynamic condition. The model has been created by assumption that the output is the water liquid saturation difference. The liquid saturation change is the total difference between the additional water and the removal water on the system. The water addition is obtained from fuel cell reaction and the electro osmotic drag. The water removal is obtained from capillary transport and evaporation process. The result shows that the capillary water transport of low temperature fuel cell is high because the evaporation rate is low.

Functional Integration of Serial Dilution and Capillary Electrophoresis on a PDMS Microchip

  • Chang, Jun-Keun;Heo, Yun-Seok;Hyunwoo Bang;Keunchang Cho;Seok Chung;Chanil Chung;Han, Dong-Chul
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.233-239
    • /
    • 2003
  • For the quantitative analysis of an unknown sample a calibration curve should be obtained, as analytical instruments give relative, rather than absolute measurements. Therefore, researchers should make standard samples with various known concentrations, measure each standard and the unknown sample, and then determine the concentration of the unknown by comparing the measured value to those of the standards. These procedures are tedious and time-consuming. Therefore, we developed a polymer based microfluidic device from polydimethylsiloxane, which integrates serial dilution and capillary electrophoresis functions in a single device. The integrated microchip can provide a one-step analytical tool, and thus replace the complex experimental procedures. Two plastic syringes, one containing a buffer solution and the other a standard solution, were connected to two inlet holes on a microchip, and pushed by a hydrodynamic force. The standard sample is serially diluted to various concentrations through the microfluidic networks. The diluted samples are sequentially introduced through microchannels by electro-osmotic force, and their laser-induced fluorescence signals measured by capillary electrophoresis. We demonstrate the integrated microchip performance by measuring the fluorescence signals of fluorescein at various concentrations. The calibration curve obtained from the electropherograms showed the expected linearity.

Simple Fabrication of Micromixer Based on Non-Equilibrium Electrokinetics in Micro/Nano Hybrid Fluidic System (단순공정으로 제작된 마이크로/나노 하이브리드 채널의 불균형 동전기성을 이용한 미세혼합기 연구)

  • Yu, Samuel;Kim, Sun-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this study, we developed a micromixer based on the non-equilibrium electrokinetics at the junction of a microchannel and nanochannel. Two fluid streams were mixed by an electro-osmotic flow and a vortex flow created as a result of the non-equilibrium electrokinetics at the junction of the microchannel and nanochannel. Initially, the microchannel was fabricated using Polydimethylsiloxane (PDMS) by the general soft lithography process and the nanochannel was created at a specific position on the microchannel by applying a high voltage. To evaluate the mixing performance of the micromixer, fluorescent distribution was analyzed by using the fluorescent dye, Rhodamine B. About 90% mixing was achieved with this novel micromixer, and this micromixer can be used in microsystems for biochemical sample analysis.

Transdermal Delivery of Ketoprofen and the Effect of Electroosmosis (케토프로펜의 경피전달 및 전기삼투압의 영향)

  • Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.491-497
    • /
    • 2004
  • We investigated some important factors which affect the transdermal flux of ketoprofen, a nonsteroidal anti-inflammatory agent, as a first step to provide some basic knowledge for the development of a iontophoretic transdermal patch system. Factors such as current density, polarity, buffer (HEPES) and electrolyte concentration and pH were studied using hairless mouse skin. The effect of poly(L-lysin), which is known to affect the electro-osmotic flow through skin, on flux was also studied. Passive flux was about $20\;{\mu}g/cm^2hr$ at pH 4.0, but was negligible at pH 7.4 where all ketoprofen molecules dissolved are ionized (ketoprofen pKa=5.94). At pH 4.0, application of anodal current increased the flux further above the passive level, however anodal flux at pH 7.4 was much smaller than passive flux at pH 4.0. The application of cathodal current at pH 4.0 increased the average flux to $30-40\;{\mu}g/cm^2hr$, depending on the current density applied. At pH 7.4, cathodal flux was only about $5\;{\mu}g/cm^2hr$. Decrease in buffer and electrolyte concentration increased this cathodal flux about 10 fold. However decrease in HEPES buffer concentration 100 fold did not affect the flux. Anodal flux of acetaminophen was much larger than cathodal flux, indicating that electroosmotic flow can be playing an important role in the flux. Poly(L-lysin) increased the cathodal flux at pH 7.4. These results provide some important insights into the mechanism of transdermal flux of ketoprofen and the role of electroosmotic flow.