• Title/Summary/Keyword: electro-discharge machining (EDM)

Search Result 43, Processing Time 0.028 seconds

Prediction of electric dynamics of electric discharge machining using Plasma model (플라즈마 모델을 이용한 방전가공의 전기적 거동 예측)

  • Kim K.W.;Jeong Y.H.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.604-607
    • /
    • 2005
  • In the electro-discharge machining the machining performance is closely related to the characteristics of discharge which can be identified from electrical behavior in gap between workpiece and electrode. Therefore, the accurate prediction of electrical behavior in electro-discharge machining (EDM) is useful to process control and optimization. However, any simulation model fur prediction of electrical behavior in EDM process has never been reported until now. In this study, a simulation model is developed to analyze the electrical behavior of electro-discharge plasma which significantly influences electrical behavior in EDM process. For the purpose of this the fundamentals of electro-discharge mechanism such as inception, propagation, formation of plasma channel and termination are investigated to accurately predict the cycle of discharge plasma in EDM. As a result, a mathematical model of electro-discharge plasma is constructed with considering the fundamentals of electro-discharge plasma. Consequently, it is demonstrated that the developed model can predict the electrical behavior of plasma such as electron density in various conditions.

  • PDF

Machining of Micro-scale Shapes using Micro-EDM Process (Micro-EDM 공정을 이용한 미세 형상 가공)

  • 김영태;박성준;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.109-117
    • /
    • 2003
  • With development of high advanced technologies and skills, micro machining techniques also are being more functional and smaller. Some of the recently developed micro machining technologies are micro drilling, micro EDM, WEDG, LBM, micro milling, micro UVM etc. In these micro machining techniques, Micro -EDM is generally used for machining micro holes, pockets, and micro structures in difficult-cut-materials. For machining micro structures, first of all, tool electrode should be fabricated by WEDG process. In micro-EDM, parameters such as peak current, pulse width, duration time are very important to fabricate the tool electrode and micro structures. Developed experimental equipments are composed of RLC circuit with PWM. In this paper, using developed micro EDM machine, the characteristics of micro electro discharge machining are investigated at micro holes, slot, and pocket machining etc. Also the trends of tool wear are investigated in case of hole and slot machining.

Fabrication of Micro Structure Using Electro Discharge Deposition (Electro Discharge Deposition (EDD)을 이용한 미세 구조물 제작)

  • 오석훈;민병권;박성준;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1865-1868
    • /
    • 2003
  • This paper provides a new method for hybrid machining, particularly suited to micro fabrication applications such as micro point, micro line, micro structure, micro partition and so on. Developed micro fabrication process by electrical discharge machining (EDM) and electrical discharge deposition (EDD) with metal powder (Ti, Fe) has been studied to build TiC or FeC structure. Titanium powder or iron powder is supplied from working fluid (kerosene or de-ionized water with powder) and adheres on a workpiece by the heat and electric power caused by the electrical discharge. The use of a tool electrode is expected to keep powder concentration high in the gap between a workpiece and a tool electrode and to accrete powder material on the workpiece. The deposition is tried under various electrical conditions (workpiece. tool electrode, working fluid, discharge current, voltage and powder etc.). On the other hand. using electrical discharge machining (EDM) with the same tool electrode, it can be used as a removal process (cutting) by electro erosion at the same time. Therefore. this new method can do a hybrid machining to build up and down a structure with the workpiece.

  • PDF

Improvements of Electro Discharge Machining Process using Side flushing Devices (방전가공시 측면 플래싱 장치를 활용한 가공성 향상)

  • Shin, Seung-Hwan;Park, Keun;Maeng, Hee-Young
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.334-343
    • /
    • 2003
  • The discharge gap clearly is to order and to promote the improvement of processing feature of die-sinking electro discharge machining(EDM). If creation carbon, which generated by Pyrolysis of EDM oil and processing pace power which is generated in between an electrode and a workpiece, are overproduced, they will lower the processing speed and roughness of the surface. Therefore, it is gone through an experiment and the flow analysis of EDM oil in order to improve the treatment of processing chips, which is an important problem by contriving a new flushing method. The condition of an electric discharge is not considered to be a progressing of processing. It is assumed that the flow of processing fluid is equal to the flow of processing chip, which is remaining in the discharge gap, and thus, analyzing then comparing with the data of the experiment and investigate its correlation.

  • PDF

Improvements of Electro Discharge Machining characteristics using Side Flushing Devices (측면 플래싱 장치를 이용한 형조 방전특성의 향상)

  • Maeng Heeyoung;Park Keun;Kim Sungdong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.272-277
    • /
    • 2005
  • The discharge gap clearly is to order and to promote the improvement of processing feature of die-sinking electro discharge machining(EDM). If creation carbon, which generated by pyrolysis of EDM oil and processing pace power which is generated in between an electrode and a workpiece, are overproduced, they will lower the processing speed and roughness of the surface. Therefore, it is gone through the .flow analysis of EDM oil in order to improve the treatment of processing chips, which is an important problem by contriving a new flushing method. The condition of an electric discharge is not considered to be a progressing of processing. It is assumed that the flow of processing fluid is equal to the flow of processing chip, which is remaining in the discharge gap, and analyzing its correlation.

  • PDF

Tool Electrode Wear Compensation using Round Trip Method for Machining Cavities in Micro EDM Process (마이크로 방전가공에서 Round Trip Method를 이용한 전극마모 보정)

  • Park Sung-Jun;Kim Young-Tae;Min Byung-Kwon;Lee Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.42-49
    • /
    • 2004
  • Electrical discharge machining (EDM) is one of the most extensively used non-conventional material removal process. The recent trend in reducing the size of product has given micro EDM a significant amount of research attention. Micro EDM is capable of machining not only micro holes and micro shafts as small as a few micrometers in diameter but also complex three dimensional micro cavities. But, longitudinal tool wear by electrical discharge is indispensable and this affects the machining accuracy in micro EDM process. Therefore, newly developed tool wear compensation strategy called round trip method is suggested and verified by experiment. In this method, machining depth of cut, overlap effect and critical travel length are also considered.

Development of Micro Milling EDM and Analysis of Machined Characteristics (마이크로 밀링 EDM 머신 개발 및 가공특성 분석)

  • Kim, Sun-Ho;Lim, Han-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Micromachining is gaining popularity due to recent advancements in MEMS(Micro Electro Mechanical Systems). Using conventional micromachining, it is relatively difficult to produce moving components in the order of microns. Photolithography for silicon material has high accuracy machining, but it has low aspect ratio. X-ray lithography has ultra high accuracy machining, but it has expensive cost. Micro-EDM(electro discharge machining) has been gaining popularity as a new alternative method to fabricate micro-structures. In this study, Micro-EDM machine is developed available for fabricate micro-structures and two processes such as side cut EDM and milling EDM is proposed. Several sets of experiment results have been performed to study the characteristics of the machining process.

The development and test of the electro-discharge machine for micro-drilling (미세구멍 가공용 방전 가공기의 개발 및 시험)

  • Baek, Hyeong-Chang;Kim, Byeong-Hee;Chang, In-Bae
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.1-7
    • /
    • 1999
  • This is the pre-study to pile up the basic technique for the electro-discharge machining in the field of micro-drilling. The machined chips are flowed out from the machining area by the flow arisen from the high speed rotation of the electrode. The cylindrical shape electrode, whose diameter is 0.5mm, is clamped by the three point clamping type clamper and the clamper is attached at the front shaft of the high speed rotating DC motor. The current for machining is controlled by pulse width modulation technique and the machining conditions such as frequency and duty ratio are changed to find out the effect of the variables for machined results.

  • PDF

Modeling of surface roughness in electro-discharge machining using artificial neural networks

  • Cavaleri, Liborio;Chatzarakis, George E.;Trapani, Fabio Di;Douvika, Maria G.;Roinos, Konstantinos;Vaxevanidis, Nikolaos M.;Asteris, Panagiotis G.
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.169-184
    • /
    • 2017
  • Electro-Discharge machining (EDM) is a thermal process comprising a complex metal removal mechanism. This method works by forming of a plasma channel between the tool and the workpiece electrodes leading to the melting and evaporation of the material to be removed. EDM is considered especially suitable for machining complex contours with high accuracy, as well as for materials that are not amenable to conventional removal methods. However, several phenomena can arise and adversely affect the surface integrity of EDMed workpieces. These have to be taken into account and studied in order to optimize the process. Recently, artificial neural networks (ANN) have emerged as a novel modeling technique that can provide reliable results and readily, be integrated into several technological areas. In this paper, we use an ANN, namely, the multi-layer perceptron and the back propagation network (BPNN) to predict the mean surface roughness of electro-discharge machined surfaces. The comparison of the derived results with experimental findings demonstrates the promising potential of using back propagation neural networks (BPNNs) for getting a reliable and robust approximation of the Surface Roughness of Electro-discharge Machined Components.