• Title/Summary/Keyword: electro deposition process

Search Result 87, Processing Time 0.026 seconds

Application of Electro-deposition Method for Crack Closing and Surface Improvement of Reinforced Concrete (철근콘크리트의 균열폐색 및 표면개선을 위한 전착의 응용)

  • 문한영;류재석
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.79-88
    • /
    • 1999
  • In this paper, the electro-deposition method for the rehabilitation of cracked concrete, based on the electro-chemical technique, is presented. The main purpose of this paper is to apply this technique to reinforced concrete members on land. After cracking with a specified load(crack width 0.5mm), 10$\times$10$\times$20cm concrete specimens with embedded steel bars were immersed in several solutions, then a constant current density between the embedded steel in concrete and an electrode in the solution was applied for 4~20 weeks. The results indicate that electro-deposits formed in this process are able to close concrete cracks and to coat the concrete surface and that formation of these electro-deposits is confirmed to have an effect of protection against detrimental materials. Therefore, it is demonstrated that the electro-deposition method can be usefully applied for the rehabilitation technique of concrete.

Fabrication of Micro Structure Using Electro Discharge Deposition (Electro Discharge Deposition (EDD)을 이용한 미세 구조물 제작)

  • 오석훈;민병권;박성준;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1865-1868
    • /
    • 2003
  • This paper provides a new method for hybrid machining, particularly suited to micro fabrication applications such as micro point, micro line, micro structure, micro partition and so on. Developed micro fabrication process by electrical discharge machining (EDM) and electrical discharge deposition (EDD) with metal powder (Ti, Fe) has been studied to build TiC or FeC structure. Titanium powder or iron powder is supplied from working fluid (kerosene or de-ionized water with powder) and adheres on a workpiece by the heat and electric power caused by the electrical discharge. The use of a tool electrode is expected to keep powder concentration high in the gap between a workpiece and a tool electrode and to accrete powder material on the workpiece. The deposition is tried under various electrical conditions (workpiece. tool electrode, working fluid, discharge current, voltage and powder etc.). On the other hand. using electrical discharge machining (EDM) with the same tool electrode, it can be used as a removal process (cutting) by electro erosion at the same time. Therefore. this new method can do a hybrid machining to build up and down a structure with the workpiece.

  • PDF

Nickel Amalgamation by Electro-deposition Process Using Mercury Cathode and Its Properties (수은 음극 상 전착에 의한 니켈 아말감의 제조와 그 물성)

  • Kim, Ki-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.5
    • /
    • pp.198-201
    • /
    • 2005
  • Nickel amalgam was Prepared by the electro-deposition with mercury cathode in a modified Watts bath. Homogeneous nickel amalgam was obtained. The fluidity of the amalgam decreased gradually with increased nickel quantity and become solid finally. Nickel powders of sub-micron size were obtained by a distillation of mercury from the amalgam. The characterization of the nickel amalgam was studied by SEM and x-ray diffractometry.

Deposition of Piezoelectric PZT(53/47) Film by Metalorganic Decomposition for Micro electro mechanical Device (Microelectromechnical system 소자 제작을 위한 유기금속분해법에 의한 압전성 PZT(53/47)박막의 증착)

  • 윤영수;정형진;신영화
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.458-464
    • /
    • 1998
  • This paper gives characterization of substrate and PZT(53/47) thin film deposited by metalorganic decomposition, which is concerned in deposition process and device fabrication process, to fabricate micro electro mechanical system (MEMS) device with piezoelectric material. The PZT thin films deposited by MOD at 700^{\circ}C$ for 30 minutes had a polycrystallinity, that is, no substrate dependence, while different interface were developed depending on the bottom electrodes. Such a structural variation could influence on not only the properties of the PZT film but also etching process for fabricating MEMS devices. Therefore the electrode structure is a very important factor in the deposition of the PZT film during etching process by HF acid for MEMS device with piezoelectric material. Piezoelectric coefficients of the PZT films on the different substrates were 40 and 80 pm/V at an applied voltage of 4V. Based in these results, it was possible for deposition of the PZT film by MOD to apply MEMS device fabrication process based on piezoelectricity after selection of proper bottom electrode.

  • PDF

Electro-chemical Mechanical Deposition for Planarization of Cu Interconnect (Cu 배선의 평탄화를 위한 ECMD에 관한 연구)

  • Jeong, Sukhoon;Seo, Heondeok;Park, Boumyoung;Park, Jaehong;Park, Seungmin;Jeong, Moonki;Jeong, Haedo;Kim, Hyoungjae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.793-797
    • /
    • 2005
  • This study introduces Electro-chemical Mechanical Deposition(ECMD) lot making Cu interconnect. ECMD is a novel technique that has ability to deposit planar conductive films on non-planar substrate surfaces. Technique involves electrochemical deposition(ECD) and mechanical sweeping of the substrate surface Preferential deposition into the cavities on the substrate surface nay be achieved through two difference mechanisms. The first mechanism is more chemical and essential. It involves enhancing deposition into the cavities where mechanical sweeping does not reach. The second mechanism involves reducing deposition onto surface that is swept. In this study, we demonstrate ECMD process and characteristic. We proceeded this experiment by changing of distribution of current density on divided water area zones and use different pad types.

Selective Electrodeposition on Titanium Surface Using Laser Beam (레이저빔을 이용한 티타늄 표면에서의 선택적 구리 전해도금)

  • Shin, Hong Shik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.44-49
    • /
    • 2017
  • Titanium has been used in various fields due to its good corrosion and erosion resistance, and superior mechanical properties. The process for selective electro-deposition on a titanium surface using laser beam is proposed in this paper. The process consists of laser irradiation, electro-deposition, and ultrasonic cleaning. Laser irradiation can change the surface morphology of titanium. Through laser irradiation, the surface cleaning effect and a rough surface can be achieved. The surface roughness of titanium was measured according to the laser beam conditions. The characteristics of selective electro-deposition on titanium surface according to surface roughness are investigated by various analytical methods such as SEM, and EDS.

Deposition of BZO nano-sized dots on the substrate surface for the enhanced magnetic properties of superconducting films

  • Chung, Kook-Chae;Yoo, Jai-Moo;Kim, Young-Kuk;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.12-15
    • /
    • 2008
  • Nano-sized dots have been formed on the buffered metal substrates using the novel approach of the electro-spray deposition, to modulate the substrate surface and induce the columnar defects in REBCO films grown on it. The $BaZrO_3$ precursor solution was synthesized and electro-sprayed out onto the negatively charged substrate surface. Using the electrostatic force, nano-sized dots can be grown and uniformly distributed on the buffered metal substrate. The height of BZO nanodots was observed above the 200nm, which are beneficial to induce the columnar defects onto the BZO as a seed. The density of BZO nanodots was also investigated and ${\sim}7.8/{\mu}m^2$ was obtained. As the deposition distance of electro-spray was shortened there was ${\sim}8times$ increase of density of nanodots. The optimization of process variables in electro-spray deposition are discussed in respect to the superconducting REBCO films processed by the Metal-Organic Deposition with the effective flux pinning properties.

Effect of Process Parameters on Microhardness of Ni-Al2O3 Composite Coatings (Ni-Al2O3 복합코팅의 마이크로 경도에 대한 공정변수의 영향)

  • Jin, Yeung-Jun;Park, Simon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1037-1045
    • /
    • 2022
  • In this study, nanoscale Al2O3 ceramic particles were used due its exceptionally high hardness characteristics, chemical stability, and wear resistance properties. These nanoparticles will be used to investigate the optimal process conditions for the electro co-deposition of the Ni-Al2O3 composite coatings. A Watts bath electrolytic solution of a controlled composition along with a fixed agitation speed was used for this study. Whereas the current density, the pH value, temperature and concentration of the nano Al2O3 particles of the electrolyte were designated as the manipulative variables. The experimental design method was based on the orthogonal array to find the optimum processing parameters for the electro co-deposition of Ni-Al2O3 composite coatings. The result of confirmation experimental based on the optimal processing condition through the analysis of variance ; EDX analysis found that the ratio of alumina increased to 8.65 wt.% and subsequently the overall hardness increased to 983 Hv. Specially, alumina were evenly distributed on Nickel matrix and particles were embedded more firmly and finely in Nickel matrix.

A Study on the widthwise thickness uniformity of HTS wire using thickness gradient deposition technology

  • Gwantae Kim;Insung Park;Jeongtae Kim;Hosup Kim;Jaehun Lee;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.24-27
    • /
    • 2023
  • Until now, many research activities have been conducted to commercialize high-temperature superconducting (HTS) wires for electric applications. Most of all researchers have focused on enhancing the piece length, critical current density, mechanical strength, and throughput of HTS wires. Recently, HTS magnet for generating high magnetic field shows degraded performance due to the deformation of HTS wire by high electro-magnetic force. The deformation can be derived from widthwise thickness non-uniformity of HTS wire mainly caused by wet processes such as electro-polishing of metal substrate and electro-plating of copper. Gradient sputtering process is designed to improve the thickness uniformity of HTS wire along the width direction. Copper stabilizing layer is deposited on HTS wire covered with specially designed mask. In order to evaluate the thickness uniformity of HTS wire after gradient sputtering process, the thickness distribution across the width is measured by using the optical microscope. The results show that the gradient deposition process is an effective method for improving the thickness uniformity of HTS wire.

Optimization for Electro Deposition Process of PC/ABS Resin Surface Treatment (수지의 하전 입자빔 전처리 공정의 최적화)

  • Park, Young Sik;Shim, Ha-Mong;Na, Myung Hwan;Song, Ho-Chun;Yoon, Sanghoo;Jang, Keun Sam
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.4
    • /
    • pp.543-552
    • /
    • 2014
  • High bandwidth RF such as Bluetooth, GPRS, EDGE, 3GSM, HSDPA is papular in the mobile phone market. A non-conducting metal coating process requires an e-beam deposition of metal, two steps of UV hard coating primer and top coating; however, it is inefficient. We navigate to the electron beam irradiation conditions(resin surface treatment conditions) in the PC/ABS resin injection process. By analyzing the experimental results, we find the optimum development conditions for the electro deposition pre-treatment process and mass production lines using the plasma generated electron beam source.