• Title/Summary/Keyword: electrical networks

Search Result 2,719, Processing Time 0.035 seconds

FENC: Fast and Efficient Opportunistic Network Coding in wireless networks

  • Pahlavani, Peyman;Derhami, Vali;Bidoki, Ali Mohammad Zareh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.52-67
    • /
    • 2011
  • Network coding is a newly developed technology that can cause considerable improvements in network throughput. COPE is the first network coding approach for wireless mesh networks and it is based on opportunistic Wireless Network Coding (WNC). It significantly improves throughput of multi-hop wireless networks utilizing network coding and broadcast features of wireless medium. In this paper we propose a new method, called FENC, for opportunistic WNC that improves the network throughput. In addition, its complexity is lower than other opportunistic WNC approaches. FENC utilizes division and conquer method to find an optimal network coding. The numerical results show that the proposed opportunistic algorithm improves the overall throughput as well as network coding approach.

Time Delay Prediction of Networked Control Systems using Cascade Structures of Fuzzy Neural Networks (종속형 퍼지 뉴럴 네트워크를 이용한 네트워크 제어 시스템의 시간 지연 예측)

  • Lee, Cheol-Gyun;Han, Chang-Wook
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.899-903
    • /
    • 2019
  • In networked control systems, time-varying delay of the transmitting signal is inevitable. If the transmission delay is longer than the fixed sampling time, the system will be unstable. To solve this problem, this paper proposes the method to predict the delay using logic-based fuzzy neural networks, and the predicted time delay will be used as a sampling time in the networked control systems. To verify the effectiveness of the proposed method, the delay data collected from the real system are used to train and test the logic-based fuzzy neural networks.

A Study on Three Phase Partial Discharge Pattern Classification with the Aid of Optimized Polynomial Radial Basis Function Neural Networks (최적화된 pRBF 뉴럴 네트워크에 이용한 삼상 부분방전 패턴분류에 관한 연구)

  • Oh, Sung-Kwun;Kim, Hyun-Ki;Kim, Jung-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.544-553
    • /
    • 2013
  • In this paper, we propose the pattern classifier of Radial Basis Function Neural Networks(RBFNNs) for diagnosis of 3-phase partial discharge. Conventional methods map the partial discharge/noise data on 3-PARD map, and decide whether the partial discharge occurs or not from 3-phase or neutral point. However, it is decided based on his own subjective knowledge of skilled experter. In order to solve these problems, the mapping of data as well as the classification of phases are considered by using the general 3-PARD map and PA method, and the identification of phases occurring partial discharge/noise discharge is done. In the sequel, the type of partial discharge occurring on arbitrary random phase is classified and identified by fuzzy clustering-based polynomial Radial Basis Function Neural Networks(RBFNN) classifier. And by identifying the learning rate, momentum coefficient, and fuzzification coefficient of FCM fuzzy clustering with the aid of PSO algorithm, the RBFNN classifier is optimized. The virtual simulated data and the experimental data acquired from practical field are used for performance estimation of 3-phase partial discharge pattern classifier.

Design of Maneuvering Target Tracking System Using Data Fusion Capability of Neural Networks (신경망의 자료 융합 능력을 이용한 기동 표적 추적 시스템의 설계)

  • Kim, Haeng-Koo;Jin, Seung-Hee;Yoon, Tae-Sung;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.552-554
    • /
    • 1998
  • In target tracking problems the fixed gain Kalman filter is primarily used to predict a target state vector. This filter, however, has a poor precision for maneuvering targets while it has a good performance for non-maneuvering targets. To overcome the problem this paper proposes the system which estimates the acceleration with neural networks using the input estimation technique. The ability to efficiently fuse information of different forms is one of the major capabilities of trained multi-layer neural networks. The primary motivation for employing neural networks in these applications comes from the efficiency with which more features can be utilized as inputs for estimating target maneuvers. The parallel processing capability of a properly trained neural network can permit fast processing of features to yield correct acceleration estimates. The features used as inputs can be extracted from the combinations of innovation data and heading changes, and for this we set the two dimensional model. The properly trained neural network system outputs the acceleration estimates and compensates for the primary Kalman filter. Finally the proposed system shows the optimum performance.

  • PDF

Genetically Optimized Hybrid Fuzzy Neural Networks Based on Linear Fuzzy Inference Rules

  • Oh Sung-Kwun;Park Byoung-Jun;Kim Hyun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.183-194
    • /
    • 2005
  • In this study, we introduce an advanced architecture of genetically optimized Hybrid Fuzzy Neural Networks (gHFNN) and develop a comprehensive design methodology supporting their construction. A series of numeric experiments is included to illustrate the performance of the networks. The construction of gHFNN exploits fundamental technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms (GAs). The architecture of the gHFNNs results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). In this tandem, a FNN supports the formation of the premise part of the rule-based structure of the gHFNN. The consequence part of the gHFNN is designed using PNNs. We distinguish between two types of the linear fuzzy inference rule-based FNN structures showing how this taxonomy depends upon the type of a fuzzy partition of input variables. As to the consequence part of the gHFNN, the development of the PNN dwells on two general optimization mechanisms: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gHFNN, the models are experimented with a representative numerical example. A comparative analysis demonstrates that the proposed gHFNN come with higher accuracy as well as superb predictive capabilities when comparing with other neurofuzzy models.

An Optimization Method Wsing Simulated Annealing for Universal Learning Network

  • Murata, Junichi;Tajiri, Akihito;Hirasawa, Kotaro;Ohbayashi, Masanao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.183-186
    • /
    • 1995
  • A method is presented for optimization of Universal Learning Networks (ULN), where, together with gradient method, Simulated Annealing (SA) is employed to elude local minima. The effectiveness of the method is shown by its application to control of a crane system.

  • PDF

Neural network structure design using genetic algorithm

  • Murata, Junichi;Tanaka, Kei;Koga, Masaru;Hirasawa, Kotaro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.187-190
    • /
    • 1995
  • A method is proposed which searches for optimal structures of Neural Networks (NN) using Genetic Algorithm (GA). The purpose of the method lies in not only finding an optimal NN structure but also leading us to the goal of self-organized control system that acquires its structure and its functionality by itself depending on its environment.

  • PDF

A Study of Wavelet Theory for System Identifications (시스템 식별을 위한 웨이브릿 이론 연구)

  • Kim, Dong-Ok;Lee, Young-Seog;Kwon, Jae-Cheol;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.635-637
    • /
    • 1998
  • Based on wavelet theory, the new notion of wavelet networks is proposed as alternative to feedforward neural networks for approximating arbitrary nonlinear functions. An algorithm presented in this paper trains coefficients of wavelet. i.e., translations and scaling., and then learns weights with the wavelet coefficients. And experimental results are reported.

  • PDF

A Learning Algorithm of Fuzzy Neural Networks Using a Shape Preserving Operation

  • Lee, Jun-Jae;Hong, Dug-Hun;Hwang, Seok-Yoon
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.131-138
    • /
    • 1998
  • We derive a back-propagation learning algorithm of fuzzy neural networks using fuzzy operations, which preserves the shapes of fuzzy numbers, in order to utilize fuzzy if-then rules as well as numerical data in the learning of neural networks for classification problems and for fuzzy control problems. By introducing the shape preseving fuzzy operation into a neural network, the proposed network simplifies fuzzy arithmetic operations of fuzzy numbers with exact result in learning the network. And we illustrate our approach by computer simulations on numerical examples.

  • PDF

An Efficient Multicast Addressing Scheme for the Self-Routing Multistage Networks

  • Kim, Hong-Ryul;Lim, Chae-Tak
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.22-28
    • /
    • 1997
  • In this paper, we propose an efficient multicast addressing scheme for he self-routing multistage networks. Using only N-bit routing header an the simple hardware logic, the new scheme can efficiently provides all point-to-multipoint connections in single pass through the multistage copy networks. We also designed a hardware logic of switching element to implementation of multicasting in ATM switches are performed.

  • PDF