• Title/Summary/Keyword: electrical grid

Search Result 2,233, Processing Time 0.035 seconds

11-kV Series-Connected H-Bridge Multilevel Converter for Direct Grid Connection of Renewable Energy Systems

  • Islam, Md. Rabiul;Guo, Youguang;Zhu, Jian Guo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.70-78
    • /
    • 2012
  • Due to the variable nature of renewable energy resources and power demand by consumers, it is difficult to operate a power system installed with only one type of renewable energy resource. Grid-based renewable generation may be the only solution to overcome this problem. The conventional approach based on a low-voltage converter with power frequency transformer is commonly employed for grid connection of offshore renewable energy systems. Because of the heavy weight and large size of the transformer, the system can be expensive and complex in terms of installation and maintenance. In this paper, an 11-kV series connected H-bridge (SCHB) multilevel voltage source converter (VSC) is proposed to achieve a compact and light direct grid connection of renewable energy systems. This paper presents the design, simulation and analysis of a five level (5L)-SCHB and an eleven level (11L)-SCHB VSC for 11-kV grid-based renewable energy systems. The performance, cost, modulation scheme and harmonic spectra of the converter are analyzed.

DC Micro-Grid Operational Analysis with a Detailed Simulation Model for Distributed Generation

  • Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon;Jeong, Yu-Seok;Yang, Hyo-Sik;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.350-359
    • /
    • 2011
  • This paper describes the operational analysis results of a DC micro-grid using a detailed model of distributed generation. A detailed model of wind power generation, photo-voltaic generation and fuel cell generation was implemented with an userdefined model created with PSCAD/EMTDC software and coded in C-language. The operational analysis was carried out using PSCAD/EMTDC software, in which the power circuit is implemented by a built-in model and the controller is modeled by an user-defined model that is also coded in C-language. Various simulation results confirm that a DC micro-grid can operate without any problems in both the grid-tied mode and in the islanded mode. The operational analysis results confirm that the DC micro-grid makes it feasible to provide power to the load stably. It can also be utilized to develop an actual system design.

A Study on Data Management and Communication Infrastructure Based Upon Standards for Smart Grid Operation (스마트그리드 운영을 위한 표준 기반 데이터 관리 및 통신 인프라에 관한 연구)

  • Choi, Seung-Hwan;Shin, Jin-Ho;Kim, Jun-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1209-1216
    • /
    • 2013
  • Recently, there is a rising interest in smart grid operating system which manages various types of distributed generation, smart meters, and electric vehicles with power grid. Considering the features of smart grid environment, the interoperability should be one of the important factors to build smart grid environment successfully. To secure interoperability, smart grid operating system should conform to some standards in terms of the data representation and communication. CIM and OPC-UA are the international standards widely used in smart grid domain for enabling interoperability. They provide common information model and the unified architecture for communicating between each systems or applications. In this paper, we illustrate a smart grid operating system that we have developed to secure interoperability between not only applications but also numerous legacy systems(applications) by implementing CIM based information model and OPC-UA based communication interface services.

Topological and Statistical Analysis for the High-Voltage Transmission Networks in the Korean Power Grid

  • Kang, Seok-Gu;Yoon, Sung-Guk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.923-931
    • /
    • 2017
  • A power grid is one of the most complex networks and is critical infrastructure for society. To understand the characteristics of a power grid, complex network analysis has been used from the early 2000s mainly for US and European power grids. However, since the power grids of different countries might have different structures, the Korean power grid needs to be examined through complex network analysis. This paper performs the analysis for the Korean power grid, especially for high-voltage transmission networks. In addition, statistical and small-world characteristics for the Korean power grid are analyzed. Generally, the Korean power grid has similar characteristics to other power grids, but some characteristics differ because the Korean power grid is concentrated in the capital area.

Micro-Grid System Analysis (마이크로그리드 시스템 해석)

  • Son, Kwang-M.;Lee, Kye-B.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.280-282
    • /
    • 2005
  • Micro-source units having power ratings in thousands of watts can provide even higher reliability and fuel efficiency than the conventional large scale units. These units are also clustered with loads creating micro-grid services to customer sites such as office buildings, industrial parks and homes. Micro-sources adopt voltage source inverter to ensure the power quality of sensitive loads. This paper deals with the connection of micro-sources into the system grid. Modeling and simulation of the grid connected micro-sources at the power frequency range are investigated. Simulation results show that the micro-grid system with two micro-sources has good dynamic characteristics.

  • PDF

A Grid Current-Controlling Shunt Active Power Filter

  • Tumbelaka, Hanny H.;Borle, Lawrence J.;Nayar, Chemmangot V.;Lee, Seong-Ryong
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.365-376
    • /
    • 2009
  • In this paper, the implementation of a three-phase shunt active power filter is presented. The filter is essentially three independent single-phase current-controlled voltage source inverters (CC-VSI) with a common DC bus. The CC- VSI is operated to directly control the AC grid current to be sinusoidal and in phase with the grid voltage without detecting the load currents. The APF consists of a current control loop, which shapes the grid currents to be sinusoidal and a voltage control loop, which regulates the active power balance of the system. The experimental results indicate that the active filter is able to handle predominantly the harmonics, as well as the unbalance and reactive power, so that the grid currents are sinusoidal, in phase with the grid voltages and symmetrical.

A Development of Smart Black Box for Grid-connected Solar Power System (계통 연계형 태양광 발전 시스템의 스마트 블랙박스의 개발)

  • Park, Sung-Won;Kim, Dong-Wan;Lee, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2119-2126
    • /
    • 2016
  • In this paper, we developed a smart black box that can monitor and record the information of the sensor from subsystem in the smart grid system. The plant is the complex power system which is integrated by solar power system, grid-connected power systems, and BESS(battery energy storage system). The black box with the web-server application can connect and synchronize to an external monitoring system and a smart phone. We hope that this system is to contribute to improve operational efficiency, reliability, and stability for the smart grid power system.

Seamless Mode Transfer of Indirect Current Controlled Parallel Grid-Connected Inverters (간접전류제어방식 병렬형 계통연계 인버터의 무순단 모드절환)

  • Song, Injong;Choi, Junsoo;Lim, Kyungbae;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.334-341
    • /
    • 2019
  • This study proposes the control strategy for the seamless mode transfer of indirect current controlled parallel grid-connected inverters. Under the abnormal grid condition, the grid-connected inverter can convert the operation mode from grid-connected to stand-alone mode to supply power to the local load. For a seamless mode transfer, the time delay problems caused by the accumulated control variable error must be solved, and the indirect current control method has been applied as one of the solutions. In this study, the design of control parameters for the proportional-resonant-based triple-loop indirect current controller and the control strategy for the seamless mode transfer of parallel grid-connected inverters are described and analyzed. The validity of the proposed mode transfer method is verified by the PSiM simulation results.

A Modified Single-Phase Transformerless Z-Source Photovoltaic Grid-Connected Inverter

  • Liu, Hongpeng;Liu, Guihua;Ran, Yan;Wang, Gaolin;Wang, Wei;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1217-1226
    • /
    • 2015
  • In a grid-connected photovoltaic (PV) system, the traditional Z-source inverter uses a low frequency transformer to ensure galvanic isolation between the grid and the PV system. In order to combine the advantages of both Z-source inverters and transformerless PV inverters, this paper presents a modified single-phase transformerless Z-source PV grid-connected inverter and a corresponding PWM strategy to eliminate the ground leakage current. By utilizing two reversed-biased diodes, the path for the leakage current is blocked during the shoot-through state. Meanwhile, by turning off an additional switch, the PV array is decoupled from the grid during the freewheeling state. In this paper, the operation principle, PWM strategy and common-mode (CM) characteristic of the modified transformerless Z-source inverter are illustrated. Furthermore, the influence of the junction capacitances of the power switches is analyzed in detail. The total losses of the main electrical components are evaluated and compared. Finally, a theoretical analysis is presented and corroborated by experimental results from a 1-kW laboratory prototype.

Power Quality Improvement for Grid Connected Inverters under Distorted and Unbalanced Grids

  • Kim, Hyun-Sou;Kim, Jung-Su;Kim, Kyeong-Hwa
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1578-1586
    • /
    • 2016
  • A power quality improvement scheme for grid connected inverters, even in the presence of the disturbances in grid voltages due to harmonic distortions and three-phase imbalance, is presented for distributed generation (DG) power systems. The control objective is to force the inverter currents to follow their references with robustness even under external disturbances in grid voltages. The proposed scheme is realized by a disturbance observer (DOB) based current control scheme. Since the uncertainty in a system can be effectively canceled out using an estimated disturbance by the DOB, the resultant system behaves like a closed-loop system consisting of a disturbance-free nominal model. For experimental verification, a 2 kVA laboratory prototype of a grid connected inverter has been built using a digital signal processor (DSP) TMS320F28335. Through comparative simulations and experimental results under grid disturbances such as harmonic distortion and imbalance, the effectiveness of the proposed DOB based current control scheme is demonstrated.