• Title/Summary/Keyword: electrical grid

Search Result 2,233, Processing Time 0.041 seconds

First Remote Operation of the High Voltage Electron Microscope Newly Installed in KBSI (초고전압 투과전자현미경의 원격시범운영)

  • Kim, Young-Min;Kim, Jin-Gyu;Kim, Youn-Joong;Hur, Man-Hoi;Kwon, Kyung-Hoon
    • Applied Microscopy
    • /
    • v.34 no.1
    • /
    • pp.13-21
    • /
    • 2004
  • The high voltage electron microscope (HVEM) newly installed in KBSI is an advanced transmission electron microscope capable of atomic resolution (${\leq}1.2{\AA}$ point-to-point resolution) together with high titling function (${\pm}60^{\circ}$), which are suitable to do 3-dimensional atomic imaging of a specimen. In addition, the instrument can be controlled by remote operation system, named as 'FasTEM' for the HVEM, which is favorable to overcome some environmental obstacles resulting from the direct operation. The FasTEM remote operation system has been established between the headquarter of KBSI in Daejeon and the Seoul branch. The server system in the headquarter has been connected with a portable client console system in the Seoul branch using an advanced internet resource, 'KOREN' of 155 Mbps grade. Most of the HVEM functions essential to do remote operation are available on the portable client console. The experiment to acquire the high resolution image of [001] Au has been achieved by excellent transmission of control signals and communication with the HVEM. Real-time reaction like direct operation, such as controls of the illumination and projection parameters, acquisition and adjustment of each detector signal, and electrical steering of each motor-driven system has been realized in remote site. It is positively anticipated that the first remote operation of HVEM in conjunction with IT infraengineering plays a important role in constructing the network based e-Science Grid in Korea for national user s facilities.

A Study on the Analysis of Electric Energy Pattern Based on Improved Real Time NIALM (개선된 실시간 NIALM 기반의 전기 에너지 패턴 분석에 관한 연구)

  • Jeong, Han-Sang;Sung, Kyung-Sang;Oh, Hae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.34-42
    • /
    • 2017
  • Since existing nonintrusive appliance load monitoring (NIALM) studies assume that voltage fluctuations are negligible for load identification, and do not affect the identification results, the power factor or harmonic signals associated with voltage are generally not considered parameters for load identification, which limits the application of NIALM in the Smart Home sector. Experiments in this paper indicate that the parameters related to voltage and the characteristics of harmonics should be used to improve the accuracy and reliability of the load monitoring system. Therefore, in this paper, we propose an improved NIALM method that can efficiently analyze the types of household appliances and electrical energy usage in a home network environment. The proposed method is able to analyze the energy usage pattern by analyzing operation characteristics inherent to household appliances using harmonic characteristics of some household appliances as recognition parameters. Through the proposed method, we expect to be able to provide services to the smart grid electric power demand management market and increase the energy efficiency of home appliances actually operating in a home network.

Application of Flux Average Discharge Equation to Assess the Submarine Fresh Groundwater Discharge in a Coastal Aquifer (연안 대수층의 해저 담지하수 유출량 산정을 위한 유량 평균 유출량 방정식의 적용)

  • Il Hwan Kim;Min-Gyu Kim;Il-Moon Chung;Gyo-Cheol Jeong;Sunwoo Chang
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.105-119
    • /
    • 2023
  • Water supply is decreasing due to climate change, and coastal and island regions are highly dependent on groundwater, reducing the amount of available water. For sustainable water supply in coastal and island regions, it is necessary to accurately diagnose the current condition and efficiently distribute and manage water. For a precise analysis of the groundwater flow in the coastal island region, submarine fresh groundwater discharge was calculated for the Seongsan basin in the eastern part of Jeju Island. Two methods were used to estimate the thickness of the fresh groundwater. One method employed vertical interpolation of measured electrical conductivity in a multi depth monitoring well; the other used theoretical Ghyben-Herzberg ratio. The value using the Ghyben-Herzberg ratio makes it impossible to accurately estimate the changing salt-saltwater interface, and the value analyzed by electrical conductivity can represent the current state of the freshwater-saltwater interface. Observed parameter was distributed on a virtual grid. The average of submarine fresh groundwater discharge fluxes for the virtual grid was determined as the watershed's representative flux. The submarine fresh groundwater discharge and flux distribution by year were also calculated at the basin scale. The method using electrical conductivity estimated the submarine fresh groundwater discharge from 2018 to 2020 to be 6.27 × 106 m3/year; the method using the Ghyben-Herzberg ratio estimated a discharge of 10.87 × 106 m3/year. The results presented in this study can be used as basis data for policies that determine sustainable water supply by using precise water budget analysis in coastal and island areas.

Electromagnetic Modeling of Shielding Effectiveness of Reinforced Concrete Walls (철근 콘크리트에 의한 전자기파 차폐 효과 모델링)

  • Hyun, Se-Young;Lee, Kyung-Won;Kim, Min-Suk;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.384-391
    • /
    • 2012
  • In this paper, reinforced concrete structures are modeled and analyzed. Reinforced concrete has been an essential element in the construction and one that is provided for shielding effectiveness at particular frequencies by rebar placed as a set up in the form of a grid. Using commercial 3-dimensional electromagnetic(3D EM) tool to analyze the reinforced concrete structure, the procedure of analysis for reinforced concrete is computed by dividing concrete, rebar and entire reinforced concrete. The spacing of rebar is bigger, transmission coefficient is higher and the diameter of rebar is bigger, transmission coefficient is lower. Also, in case of two layers is analyzed by gap of layers. Using single layer rebar that thickness of rebar given by 10, 20 and 30 mm have transmission coefficient of -1.89, -2.73 and -4.76 dB/10 cm at 500 MHz. Also, two layers rebar obtain -1.89, -2.73 and -4.76 dB/10 cm for same conditions.

Characteristics of Open-Loop Current Sensor with Temperature Compensation Circuit (온도보상회로를 부착한 개방형 전류측정기의 특성)

  • Ku, Myung-Hwan;Park, Ju-Gyeong;Cha, Guee-Soo;Kim, Dong-Hui;Choi, Jong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8306-8313
    • /
    • 2015
  • Open-type current sensors have been commonly used for DC motor controller, AC variable controller and Uninterruptible Power Supply. Recently they have begun to be used more widely, as the growth of renewable energy and smart-grid in power system. Considering most of the open-type current sensors are imported, developing the core technology needed to produce open-type current sensors is required. This paper describes the development and test results of open-type current sensors. Design of C type magnetic core, selection and test of a Hall sensor, design of current source circuit and signal conditioning circuit are described. 100A class DIP(Dual In-line Package) type and SMD(Surface Mount Devide) type open-type current sensors was made and tested. Test results show that the developed open-type current sensor satisfies the accuracy requirement of 2% and linearity requirement of 2% at 100 A of DC and AC current of 60Hz. Temperature compensation was carried out by using a temperature compensation circuit with NTC(Negative Temperature Coefficient) thermistor and the effect of the temperature compensation are described.

Accurate Localization of Metal Electrodes Using Magnetic Resonance Imaging (자기공명영상을 이용한 금속전극의 정확한 위치 결정)

  • Joe, Eun-Hae;Ghim, Min-Oh;Ha, Yoon;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.11-21
    • /
    • 2011
  • Purpose : Localization using MRI is difficult due to susceptibility induced artifacts caused by metal electrodes. Here we took an advantage of the B0 pattern induced by the metal electrodes by using an oblique-view imaging method. Materials and Methods : Metal electrode models with various diameters and susceptibilities were simulated to understand the aspect of field distortion. We set localization criteria for a turbo spin-echo (TSE) sequence usingconventional ($90^{\circ}$ view) and $45^{\circ}$ oblique-view imaging method through simulation of images with various resolutions and validated the criteria usingphantom images acquired by a 3.0T clinical MRI system. For a gradient-refocused echo (GRE) sequence, which is relatively more sensitive to field inhomogeneity, we used phase images to find the center of electrode. Results : There was least field inhomogeneity along the $45^{\circ}$ line that penetrated the center of the electrode. Therefore, our criteria for the TSE sequence with $45^{\circ}$ oblique-view was coincided regardless of susceptibility. And with $45^{\circ}$ oblique-view angle images, pixel shifts were bidirectional so we can detect the location of electrodes even in low resolution. For the GRE sequence, the $45^{\circ}$ oblique-view anglemethod madethe lines where field polarity changes become coincident to the Cartesian grid so the localization of the center coordinates was more facilitated. Conclusion : We suggested the method for accurate localization of electrode using $45^{\circ}$ oblique-view angle imaging. It is expected to be a novelmethodto monitoring an electrophysiological brain study and brain neurosurgery.

Voice Activity Detection using Motion and Variation of Intensity in The Mouth Region (입술 영역의 움직임과 밝기 변화를 이용한 음성구간 검출 알고리즘 개발)

  • Kim, Gi-Bak;Ryu, Je-Woong;Cho, Nam-Ik
    • Journal of Broadcast Engineering
    • /
    • v.17 no.3
    • /
    • pp.519-528
    • /
    • 2012
  • Voice activity detection (VAD) is generally conducted by extracting features from the acoustic signal and a decision rule. The performance of such VAD algorithms driven by the input acoustic signal highly depends on the acoustic noise. When video signals are available as well, the performance of VAD can be enhanced by using the visual information which is not affected by the acoustic noise. Previous visual VAD algorithms usually use single visual feature to detect the lip activity, such as active appearance models, optical flow or intensity variation. Based on the analysis of the weakness of each feature, we propose to combine intensity change measure and the optical flow in the mouth region, which can compensate for each other's weakness. In order to minimize the computational complexity, we develop simple measures that avoid statistical estimation or modeling. Specifically, the optical flow is the averaged motion vector of some grid regions and the intensity variation is detected by simple thresholding. To extract the mouth region, we propose a simple algorithm which first detects two eyes and uses the profile of intensity to detect the center of mouth. Experiments show that the proposed combination of two simple measures show higher detection rates for the given false positive rate than the methods that use a single feature.

Fabrication of MEMS Test Socket for BGA IC Packages (MEMS 공정을 이용한 BGA IC 패키지용 테스트 소켓의 제작)

  • Kim, Sang-Won;Cho, Chan-Seob;Nam, Jae-Woo;Kim, Bong-Hwan;Lee, Jong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.11
    • /
    • pp.1-5
    • /
    • 2010
  • We developed a novel micro-electro mechanical systems (MEMS) test socket using silicon on insulator (SOI) substrate with the cantilever array structure. We designed the round shaped cantilevers with the maximum length of $350{\mu}m$, the maximum width of $200{\mu}m$ and the thickness of $10{\mu}m$ for $650{\mu}m$ pitch for 8 mm x 8 mm area and 121 balls square ball grid array (BGA) packages. The MEMS test socket was fabricated by MEMS technology using metal lift off process and deep reactive ion etching (DRIE) silicon etcher and so on. The MEMS test socket has a simple structure, low production cost, fine pitch, high pin count and rapid prototyping. We verified the performances of the MEMS test sockets such as deflection as a function of the applied force, path resistance between the cantilever and the metal pad and the contact resistance. Fabricated cantilever has 1.3 gf (gram force) at $90{\mu}m$ deflection. Total path resistance was less than $17{\Omega}$. The contact resistance was approximately from 0.7 to $0.75{\Omega}$ for all cantilevers. Therefore the test socket is suitable for BGA integrated circuit (IC) packages tests.

Weighted Energy Detector for Detecting Uunknown Threat Signals in Electronic Warfare System in Weak Power Signal Environment (전자전 미약신호 환경에서 미상 위협 신호원의 검출 성능 향상을 위한 가중 에너지 검출 기법)

  • Kim, Dong-Gyu;Kim, Yo-Han;Lee, Yu-Ri;Jang, Chungsu;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.3
    • /
    • pp.639-648
    • /
    • 2017
  • Electronic warfare systems for extracting information of the threat signals can be employed under the circumstance where the power of the received signal is weak. To precisely and rapidly detect the threat signals, it is required to use methods exploiting whole energy of the received signals instead of conventional methods using a single received signal input. To utilize the whole energy, numerous sizes of windows need to be implemented in a detector for dealing with all possible unknown length of the received signal because it is assumed that there is no preliminary information of the uncooperative signals. However, this grid search method requires too large computational complexity to be practically implemented. In order to resolve this complexity problem, an approach that reduces the number of windows by selecting the smaller number of representative windows can be considered. However, each representative window in this approach needs to cover a certain amount of interval divided from the considering range. Consequently, the discordance between the length of the received signal and the window sizes results in degradation of the detection performance. Therefore, we propose the weighted energy detector which results in improved detection performance comparing with the conventional energy detector under circumstance where the window size is smaller than the length of the received signal. In addition, it is shown that the proposed method exhibits the same performance under other circumstances.

A Fuel Cell Generation Modeling and Interconnected Signal Analysis using PSCAD/EMTDC (연료전지 발전시스템의 PSCAD/EMTDC 모델링 및 계통연계에 따른 전력신호 분석에 관한 연구)

  • Choi, Sang-Yule;Park, Jee-Woong;Lee, Jong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.21-30
    • /
    • 2008
  • The fuel cell generation convert fuel source, and gas directly to electricity in an electro-chemical process. Unlike traditional and conventional turbine engines, the process of fuel cell generation do not burn the fuel and run pistons or shafts, and it has not revolutionary machine, so have fewer efficiency losses, low emissions and no noisy moving parts. A high power density allows fuel cells to be relatively compact source of electric power, beneficial in application with space constraints. In this system, the fuel cell itself is nearly small-sized by other components of the system such as the fuel reformer and power inverter. So, the fuel cell energy's stationary fuel cells produce reliable electrical power for commercial and industrial companies as well as utilities. In this paper, a fuel cell system has been modeled using PSCAD/EMTDC to analyze its electric signals and characteristics. Also the power quality of the fuel cell system has been evaluated and the problems which can be occurred during its operation have been studied by modeling it more detailed. Particularly, we have placed great importance on its power quality and signal characteristics when it is connected with a power grid.