• Title/Summary/Keyword: electrical facilities

Search Result 1,218, Processing Time 0.024 seconds

Seismic response evaluation of 154 kV transformer porcelain bushing by shaking table tests

  • Chun, Nakhyun;Jeon, Bubgyu;Kim, Sungwan;Chang, Sungjin;Son, Suwon
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.155-165
    • /
    • 2022
  • The use of electricity and communication between electronic devices is increasing daily, which makes the stability of electrical power supply vital. Since the 1990s, large earthquakes have occurred frequently causing considerable direct damage to electrical power facilities as well as secondary damage, such as difficulty in restoring functions due to the interruption of electric power supply. Therefore, it is very important to establish measures to protect electrical power facilities, such as transformers and switchboards, from earthquakes. In this study, a 154 kV transformer whose service life had expired was installed on the base fabricated by simulating the field conditions and conducting the shaking table tests. The dynamic characteristics and seismic behavior of the 154 kV transformer were analyzed through the resonance frequency search test and seismic simulation test that considers the front, rear, left, and right directions. Since the purpose of this study is to analyze the acceleration amplification in the bushing due to the acceleration amplification, the experimental results were analyzed focusing on the acceleration response and the converted acceleration amplification ratio rather than the failure due to the displacement response of the transformer. The seismic force amplification at the transformer bushing was evaluated by simulating the characteristics of electrical power facilities in South Korea, and compared with the IEC TS 61463 acceleration amplification factor. Finally, the amplification factor at zero period acceleration (ZPA) modified for each return period was summarized. The results of this study can be used as data to define the amplification factor at ZPA of the transformer bushing, simulating the characteristics of electrical power facilities in Korea.

Implementation scheme for the efficient building of Distribution Facilities Information Management and Operation using GIS (GIS기술을 이용한 배전설비관리 및 운영의 효율적인 추진방안)

  • Kwon, O-Hyung;Moon, Soo-Deog;Kim, Jeong-Gu
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1131-1133
    • /
    • 1998
  • Distribution facilities are installed dispersedly nationwide and in view of huge amounts. it makes it difficult to manage and update distribution facilities information manually. Consequently, much efforts have been exerted on computerization of distribution facilities information. KEPCO has been building distribution facilities information system using GIS technology(DGIS) to manage distribution facilities. In order to implement DGIS, digitizing the existing cartographical and land registration map is essential. In this regard, the Government is pursuing the NGIS project. In parrallel with it, DGIS project will be accelerated in the future. This paper suggests the efficient development plans to computerize distribution facilities using GIS technology.

  • PDF

A Study on the Web-based Overall Information Management System Developement of the Overhead Distribution Facilities Using SIAS (SIAS를 이용한 웹 기반 가동배전설비 종합 정보관리 시스템 개발에 관한 연구)

  • Lee, Dong-Yeop;Kim, Dong-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.898-904
    • /
    • 2009
  • The objective of the present study lies in constructing web-based GIS system providing broad range of information applicable for power/telecommunications distribution facilities through cable. Nowadays, Korea is renowned forits faste sttele communications network across the nation enjoyable for being a test-runbed by worldwide contents providers. It is not too much to say that the trend is caused by the fact that Korea utilizes the cobweb-like power transmission cables applicable for the nationwide telecommunications networking. In particular, the trend has been all the more encouraged by the governmental drive to expedite the telecommunication network by way of the established power transmission facilities deemed as publicutility. Nevertheless, few can deny that the overexcessive competition among telecommunication service providers increasingly gives rise to unauthorized, arbitrary facilitation of distribution devices, which becomes much burden in operating the normal power/telecommunications distribution facilities by a power-generating company. In this regard, the study, to cope with such problems, attempts to develop a web GIS-based information management system compatible with NDIS(New Distribution Information System), a distribution facility management system now under operation by KEPCO, making advantage of GE Energy's SIAS(Smallworld Internet Application) technology. The model provided by this study is expected to get closer into effective operation of distribution facilities along with better sharing of information among conventional telecommunications operators, while getting rid of infringed facilitation cases

A Voltage Drops Computation Program on Multi-Distributed Random Loads (다중 분산부하 전압강하산정 프로그램)

  • Kang, Cha-Nyeong;Kwon, Sae-Hyuk;Cho, Sung-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.64-70
    • /
    • 2007
  • A voltage drop in the electrical circuit must be unavoidable. The voltage drop in the electrical circuit means a loss of heat. The heat lost would change the characteristics of the insulator and thus, the insulating performance would be towered resulting in electric leakage, electric shock, power failure, fire and other accidents. Hence, an optimized design against the voltage drop in the electrical circuit must be an important factor determining safety and economy of electrical facilities. This study analyzed the effects of voltage drop on the electrical circuit for such low-voltage electrical facilities requiring the public safety foremost and subject to multi-distributed random loads as street lamps, buildings and subway stations, and thereupon, developed an optimized voltage drop computation program to enhance safety and economy of those electrical facilities.

Preventing Method against the Occurrence of a Corona between a Dead End clamp and a Porcelain Insulator Used in 154kV Substation

  • Han, Woon-Ki;Choi, Jong-Soo;Lee, Jun;Kim, Jae-Chul
    • International Journal of Safety
    • /
    • v.6 no.2
    • /
    • pp.22-26
    • /
    • 2007
  • An episode of corona is a heterogeneity-caused electric discharge that occurs when electric fields are formed layer on layer and concentrated on an electrode. Electric wires built at the tip of 154kV private facilities use dead end clamp spawns corona from homogeneity caused by field concentration. Corona induces power loss, noise, insulator failure and more. In this research, we've studied the characteristics of coronas that take place in porcelain insulators and terminal electric wires of supporting hard wares (dead end clamp) that are set up as spares in the 154kV private facilities use hydroelectricity installations to support electric wires. Corona, which cannot be identified by regular methods, was measured utilizing UV image camera. As the result of measuring corona via UV image camera, we've confirmed that the depletion of insulators was accelerated following the wire end treatment method and validated the stress intensity of insulators at various lengths of bare wires caused by electric fields via FEMLAB. We have also proposed a new model for relieving homogeneity-caused field concentration, and after analyzing the proposed model via FEMLAB, we've confirmed that the concentration of field distribution was indeed reduced. Such results are exploited in installation of private facilities use equipments, maintenance of insulators and hard wares as well as safety enhancement, and are anticipated to be effectively utilized in corona prevention measures.

Study on Establishing Investment Mathematical Models for Each Application ESS Optimal Capacity in Nationwide Perspective (국가적 관점에서 각 용도별 ESS 적정용량 산정을 위한 투자수리모델 수립에 관한 연구)

  • Kim, Jung-Hoon;Youn, Seok-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.979-986
    • /
    • 2016
  • At present, electric power industry around the world are being gradually changed to a new paradigm, such as electrical energy storage system, the wireless power transmission. Demand for ESS, the core technology of the new paradigm, has been growing worldwide. However, it is essential to estimate the optimal capacity of ESS facilities for frequency regulation because the benefit would be saturated in accordance with the investment moment and the increase of total invested capacity of ESS facilities. Hence, in this paper, the annual optimal mathematical investment model is proposed to estimate the optimal capacity and to establish investment plan of ESS facility for frequency regulation. The optimal mathematical investment model is newly established for each season, because the construction period is short and the operation effect for the load by seasons is different unlike previous the mathematical investment model. Additionally, the marginal operating cost is found by new mathematical operation model considering no-load cost and start-up cost as step functions improving the previous mathematical operation model. ESS optimal capacity is established by use value in use iterative methods. In this case, ESS facilities cost is used in terms of the value of the beginning of the year.

A Study on Daily Operation Model for Total Energy System Including Building Cogeneration, Ice Storage, Thermal and Electrical Storage Facilities (건물용 열병합발전 설비를 중심으로 한 종합 에너지 시스템의 최적 일간 운전모형 수립에 관한 연구)

  • Park, Jong-Seong;Chang, Seung-Chan;Shim, Keun-Bo;Kim, Jung-Hoon;Ko, Yo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.724-726
    • /
    • 1996
  • In this paper, we propose an optimal daily operation model for the total energy system which includes cogeneration, thermal storage and electrical charger and ice storage facilities. Storing and utilizing the surplus thermal and electrical energy, the daily operation cost could be reduced and more efficient use of thermal energy could be achieved. The ice storage cooling system has a merit of reduce the electricity cost by time of day rate(peak/off-peak). And also, refrigerator can be down sized compare to the other cooling system From this model, operation costs of the sample cogeneration system with/without auxiliary facilities are obtained and compared to each other. In case study, the sensitivity of operating cost is simulated according to the variation of cogeneration production cost, electricity rate, etc.

  • PDF

카본파이버 매트 전극접지 기술

  • Choe, Un-Gu;Eom, Ju-Hong;Kim, Gwang-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.32-40
    • /
    • 2008
  • Recently, due to the onset of the information age, various high-priced, large-size machines have been invented such as intelligent building and high-tech computer operated facilities. Consequently, all kinds of electrical, electronic, and communication equipments and facilities have been found to be vulnerable even to small amounts of electrical shock. Interference between equipments and equipment malfunction occur because of various electromagnetic interferences. Galvanic action by direct current (D.C.) causes gas valve corrosion and other electrical problems such as static electricity and electromagnetic interference (EMI) occur as well. Most of the problems stated above occur because of problems in grounding.

  • PDF

A study on the Field Weakening Control of Induction Machine System for Parking Facilities (주차설비용 벡터제어 유도전동기 시스템의 약계자제어에 관한 연구)

  • Choi, Cheol;Lee, Sang-Hun;Kim, Byoung-Soo;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1919-1921
    • /
    • 1998
  • In this paper, a control method for field weakening region of induction machine drive which is based on indirect field oriented control was implemented. Also, application method of direct field oriented control in the field weakening region using maximum torque control methods which is adaptable for parking facilities was studied. The implemented method which is based on direct field oriented control method ensures the full utilization of the output torque capability of the machine over the conventional 1/${\omega}_r$ method. And machine drive system can obtain the robustness to motor parameter variation.

  • PDF

Analog-Digital Switching Mixed Mode Low Ripple - High Efficiency Li-Ion Battery Charger (아날로그 - 디지털 스위칭 혼합형 저 리플- 고 효율 Li-Ion 배터리 충전기)

  • Jung, Sang-Hwa;Woo, Young-Jin;Kim, Nam-In;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2531-2533
    • /
    • 2001
  • This paper describes a low noise and high efficiency analog-digital switching mixed mode battery charger for production facilities of Li-Ion batteries. The requirements for battery chargers for production facilities are very strict. The accuracy of output voltage and output current should be below 0.1% with very low ripple current. Therefore analog type linear regulators are widely used for battery charger in spite of their inefficiency and bulkiness. We combined linear regulator as a voltage source with digital switching converter as a dependent current source. Low current ripple and high accuracy are obtained by linear regulator while high efficiency is achieved by digital switching converter. Experimental results show that proposed method has 0.1% ripple and 90% efficiency at an output current of 1A for a battery voltage of 4V.

  • PDF