• Title/Summary/Keyword: electrical conduction

Search Result 1,336, Processing Time 0.032 seconds

Properties of ZnO:Ga Transparent Conducting Film Fabricated on O2 Plasma-Treated Polyethylene Naphthalate Substrate (산소플라즈마 전처리된 Polyethylene Naphthalate 기판 위에 증착된 ZnO:Ga 투명전도막의 특성)

  • Kim, Byeong-Guk;Kim, Jeong-Yeon;Oh, Byoung-Jin;Lim, Dong-Gun;Park, Jae-Hwan;Woo, Duck-Hyun;Kweon, Soon-Yong
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.175-180
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used for optoelectronic applications. Among TCO materials, zinc oxide (ZnO) has been studied extensively for its high optical transmission and electrical conduction. In this study, the effects of $O_2$ plasma pretreatment on the properties of Ga-doped ZnO films (GZO) on polyethylene naphthalate (PEN) substrate were studied. The $O_2$ plasma pretreatment process was used instead of conventional oxide buffer layers. The $O_2$ plasma treatment process has several merits compared with the oxide buffer layer treatment, especially on a mass production scale. In this process, an additional sputtering system for oxide composition is not needed and the plasma treatment process is easily adopted as an in-line process. GZO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion between the PEN substrate and the GZO film, the $O_2$ plasma pre-treatment process was used prior to GZO sputtering. As the RF power and the treatment time increased, the contact angle decreased and the RMS surface roughness increased significantly. It is believed that the surface energy and adhesive force of the polymer surfaces increased with the $O_2$ plasma treatment and that the crystallinity and grain size of the GZO films increased. When the RF power was 100W and the treatment time was 120 sec in the $O_2$ plasma pretreatment process, the resistivity of the GZO films on the PEN substrate was $1.05\;{\times}\;10^{-3}{\Omega}-cm$, which is an appropriate range for most optoelectronic applications.

Photovoltaic Properties of Dendritic Photosensitizers containing multi-chromophore for Dye-sensitized Solar Cells (multi-chromophore를 가지는 유기염료의 DSSC 광전변환거동)

  • Kim, MyeongSeok;Cheon, Jong Hun;Jung, DaeYoung;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.117.2-117.2
    • /
    • 2011
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline TiO2 electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline TiO2. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

Oxygen Plasma Effect on AlGaN/GaN HEMTs Structure Grown on Si Substrate

  • Seo, Dong Hyeok;Kang, Sung Min;Lee, Dong Wha;Ahn, Du Jin;Park, Hee Bin;Ahn, Youn Jun;Kim, Min Soo;Kim, Yu Kyeong;Lee, Ho Jae;Song, Dong Hun;Kim, Jae Hee;Bae, Jin Su;Cho, Hoon Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.420-420
    • /
    • 2013
  • We investigated oxygen plasma effect on defect states near the interface of AlGaN/GaN High Electron Mobility Transistor (HEMT) structure grown on a silicon substrate. After the plasma treatment, electrical properties were evaluated using a frequency dependant Capacitance-Voltage (C-V) and a temperature dependant C-V measurements, and a deep level transient spectroscopy (DLTS) method to study the change of defect densities. In the depth profile resulted from the temperature dependant C-V, a sudden decrease in the carrier concentration for two-dimensional electron gas (2DEG) nearby 250 K was observed. In C-V measurement, the interface states were improved in case of the oxygen-plasma treated samples, whereas the interface was degraded in case of the nitrogen-plasma treated sample. In the DLTS measurement, it was observed the two kinds of defects well known in AlGaN/GaN structure grown on sapphire substrate, which have the activation energies of 0.15 eV, 0.25 eV below the conduction band. We speculate that this defect state in AlGaN/GaN on the silicon substrate is caused from the decrease in 2DEG's carrier concentrations. We compared the various DLTS signals with filling pulse times to identify the characteristics of the newly found defect. In the filling pulse time range under the 80 us, the activation energies changed as the potential barrier model. On the other hand, in the filling pulse time range above the 80 us, the activation energies changed as the extended potential model. Therefore, we suggest that the found defect in the AlGaN/GaN/Si structure could be the extended defect related with AlGa/N/GaN interface states.

  • PDF

PWM-PFC Step-Up Converter For Novel Loss-Less Snubber (새로운 무손실 스너버에 의한 PWM-PFC 스텝-업 컨버터)

  • Kwak Dong-Kurl;Lee Bong-Seob;Jung Do-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.1 s.307
    • /
    • pp.45-52
    • /
    • 2006
  • In this paper, authors propose a step-up converter of pulse width modulation (PWM) and power factor correction (PFC) by using a novel loss-less snubber. The proposed converter for a discontinuous conduction mode (DCM) eliminates the complicated circuit control requirement and reduces the size of components. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of ac input voltage under the constant duty cycle switching. Thereupon, the input power factor is nearly unity and the control method is simple. In the general DCM converters, the switching devices are fumed-on with the zero current switching (ZCS), and the switching devices must be switched-off at a maximum reactor current. To achieve a soft switching (ZCS and ZVS) of the switching turn-off, the proposed converter is constructed by using a new loss-less snubber which is operated with a partial resonant circuit. The result is that the switching loss is very low and the efficiency of converter is high. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

Intrinsic and Extrinsic Defects and Their Itinerant Electronic Conductivity of Ceria (본성 및 외성 영역에서 Ceria 의 결함구조 및 자유전자 전도도)

  • Keu Hong Kim;Hyun Koen Suh;Young Sik Kwon;Jae Shi Choi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.389-394
    • /
    • 1987
  • The electrical conductivity of CeO$_2$ has been measured in the temperature range of 300 to 1000${\circ}$C under the oxygen pressures of 10$^{-5}$ to 10$^{-1}$ atm. Plots of log ${\sigma}$ vs. 1/T at constant PO$_2$ are found to be linear with an inflection, and the activation energy obtained from the slopes appears to be 2.16 eV for the intrinsic region. The conductivity dependences on PO$_2$ at the above temperature range are closely approximated by ${\sigma}$ ${\alpha}$PO$_2^{-1/4}$ for the intrinsic and ${\sigma}$ ${\alpha}$PO$_2^{-1/6.2}$ for the extrinsic, respectively. The dominant defects in this sample are believed to be Ce$^{3{\cdot}}$ interstitial for the intrinsic and the (Vo-2e') for the extrinsic range. The interpretations of conductivity dependences on temperature and $PO_2$ are presented, and conduction mechanisms are proposed to explain the data.

  • PDF

P Wave Detection Algorithm through Adaptive Threshold and QRS Peak Variability (적응형 문턱치와 QRS피크 변화에 따른 P파 검출 알고리즘)

  • Cho, Ik-sung;Kim, Joo-Man;Lee, Wan-Jik;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1587-1595
    • /
    • 2016
  • P wave is cardiac parameters that represent the electrical and physiological characteristics, it is very important to diagnose atrial arrhythmia. However, It is very difficult to detect because of the small size compared to R wave and the various morphology. Several methods for detecting P wave has been proposed, such as frequency analysis and non-linear approach. However, in the case of conduction abnormality such as AV block or atrial arrhythmia, detection accuracy is at the lower level. We propose P wave detection algorithm through adaptive threshold and QRS peak variability. For this purpose, we detected Q, R, S wave from noise-free ECG signal through the preprocessing method. And then we classified three pattern of P wave by peak variability and detected adaptive window and threshold. The performance of P wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 92.60%.

Physical Characterization of GaAs/$\textrm{Al}_{x}\textrm{Ga}_{1-x}\textrm{As}$/GaAs Heterostructures by Deep Level transient Spectroscopy (DLTS 방법에 의한 GaAs/$\textrm{Al}_{x}\textrm{Ga}_{1-x}\textrm{As}$/GaAs 이종구조의 물성분석에 관한 연구)

  • Lee, Won-Seop;Choe, Gwang-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.460-466
    • /
    • 1999
  • The deep level electron traps in AP-MOCVD GaAs/undoped Al\ulcornerGa\ulcornerAs/n-type GaAs heterostructures have been investigated by means of Deep Level Transient Spectroscopy DLTS). In terms of the experimental procedure, GaAs/undoped Al\ulcornerGa\ulcornerAs/n-type GaAs heterostructures were deposited on 2" undoped semi-insulating GaAs wafers by the AP-MOCVD method at $650^{\circ}C$ with TMGa, AsH3, TMAl, and SiH4 gases. The n-type GaAs conduction layers were doped with Si to the target concentration of about 2$\times$10\ulcornercm\ulcorner. The Al content was targeted to x=0.5 and the thicknesses of Al\ulcornerGa\ulcornerAs layers were targeted from 0 to 40 nm. In order to investigate the electrical characteristics, an array of Schottky diodes was built on the heterostructures by the lift-off process and Al thermal evaporation. Among the key results of this experiment, the deep level electron traps at 0.742~0.777 eV and 0.359~0.680 eV were observed in the heterostructures; however, only a 0.787 eV level was detected in n-type GaAs samples without the Al\ulcornerGa\ulcornerAs overlayer. It may be concluded that the 0.787 eV level is an EL2 level and that the 0.742~0.777 eV levels are related to EL2 and residual oxygen impurities which are usually found in MOCVD GaAs and Al\ulcornerGa\ulcornerAs materials grown at $630~660^{\circ}C$. The 0.359~0.680 eV levels may be due to the defects related with the al-O complex and residual Si impurities which are also usually known to exist in the MOCVD materials. Particularly, as the Si doping concentration in the n-type GaAs layer increased, the electron trap concentrations in the heterostructure materials and the magnitude of the C-V hysteresis in the Schottky diodes also increased, indicating that all are intimately related.ated.

  • PDF

The Cycling Performance of Graphite Electrode Coated with Tin Oxide for Lithium Ion Battery (리튬이온전지용 주석산화물이 도포된 흑연전극의 싸이클 성능)

  • Kang, Tae-Hyuk;Kim, Hyung-Sun;Cho, Won-Il;Cho, Byung-Won;Ju, Jeh-Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.52-56
    • /
    • 2002
  • Tin oxide was coated on graphite particle by sol-gel method and an electrode with this material having microcrystalline structure for lithium ion battery was obtained by heat treatment in the range $400-600^{\circ}C$. The content of tin oxide was controlled within the range of $2.25wt\%\~11.1wt\%$. The discharge capacity increased with the content of tin oxide and also initial irreversible capacity increased. The discharge capacity of tin oxide electrode showed more than 350 mAh/g at the initial cycle and 300 mAh/g after the 30th cycle in propylene carbonate(PC) based electrolyte whereas graphite electrode without surface modification showed 140 mAh/g. When the charge and discharge rate was changed from C/5 to C/2, The discharge capacity of tin oxide and graphite electrode showed $92\%\;and\;77\%$ of initial capacity, respectively. It has been considered that such an enhancement of electrode characteristics was caused because lithium $oxide(Li_2O)$ passive film formed from the reaction between tin oxide and lithium ion prevented the exfoliation of graphite electrode and also reduced tin enhanced the electrical conduction between graphite particles to improve the current distribution of electrode.

Diagnostic Value of Magnetic Motor Evoked Potential Parameters in Intramedullary Myelopathy (수내 척수병증에서 자기운동유발전위 지표의 진단적 가치)

  • Seo, Sang Hyeok;Kim, Yong Bum;Moon, Heui Soo;Chung, Pil Wook;An, Jae Young;Bae, Jong Seok;Kim, Minky;Shin, Kyong Jin;Kim, Byoung Joon
    • Annals of Clinical Neurophysiology
    • /
    • v.8 no.1
    • /
    • pp.29-35
    • /
    • 2006
  • Background: Transcranial magnetic stimulation (TMS) is a non-invasive diagnostic method particularly suited to investigation the long motor tracts. The clinical value of TMS in most spinal cord diseases has still to be made. Diagnostic value of magnetic motor evoked potential (MEP) parameters in intramedullary spinal cord lesions was investigated. Methods: MEP elicited by TMS was recorded in 57 patients with clinically and radiologically defined intramedullary myelopathy. Twenty five patients with cervical myelopathy (CM) and 32 thoracic myelopathy (TM) were included. Recordings were performed during resting and minimal voluntary contraction at both abductor pollicis brevis (APB) and tibialis anterior (TA) muscles. Stimulation threshold(ST), amplitude, and central motor conduction time (CCT) were measured at resting and facilitated conditions. CCT was calculated by two means; central motor latency (CML)-M using magnetic transcranial and root stimulation, and CML-F using electrical F-wave study. The results were compared between patient groups and 10 normal control group. Results: Facilitated mean ST recorded at TA was elevated in both CM and TM compared with control group. Resting mean CML-M at TA was significantly prolonged in both CM and TM, and CML-M was absent or delayed in 37.1% of CM and 8% of TM at APB with facilitation. Facilitated mean MEP amplitude at ABP was lower in CM than in TM, while MEP/M ratios were not different significantly between groups. Conclusions: Magnetic motor evoked potential has diagnostic value in intramedullary myelopathy and localizing value in differentiating between CM and TM by recording at APB and TA. It is a noninvasive way to investigate the functional status of motor tracts of spinal cord.

  • PDF

Energy Band Structure, Electronic and Optical properties of Transparent Conducting Nickel Oxide Thin Films on $SiO_2$/Si substrate

  • Denny, Yus Rama;Lee, Sang-Su;Lee, Kang-Il;Lee, Sun-Young;Kang, Hee-Jae;Heo, Sung;Chung, Jae-Gwan;Lee, Jae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.347-347
    • /
    • 2012
  • Nickel Oxide (NiO) is a transition metal oxide of the rock salt structure that has a wide band gap of 3.5 eV. It has a variety of specialized applications due to its excellent chemical stability, optical, electrical and magnetic properties. In this study, we concentrated on the application of NiO thin film for transparent conducting oxide. The energy band structure, electronic and optical properties of Nickel Oxide (NiO) thin films grown on Si by using electron beam evaporation were investigated by X-Ray Photoelectron Spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and UV-Spectrometer. The band gap of NiO thin films determined by REELS spectra was 3.53 eV for the primary energies of 1.5 keV. The valence-band offset (VBO) of NiO thin films investigated by XPS was 3.88 eV and the conduction-band offset (CBO) was 1.59 eV. The UV-spectra analysis showed that the optical transmittance of the NiO thin film was 84% in the visible light region within an error of ${\pm}1%$ and the optical band gap for indirect band gap was 3.53 eV which is well agreement with estimated by REELS. The dielectric function was determined using the REELS spectra in conjunction with the Quantitative Analysis of Electron Energy Loss Spectra (QUEELS)-${\varepsilon}({\kappa},{\omega})$-REELS software. The Energy Loss Function (ELF) appeared at 4.8, 8.2, 22.5, 38.6, and 67.0 eV. The results are in good agreement with the previous study [1]. The transmission coefficient of NiO thin films calculated by QUEELS-REELS was 85% in the visible region, we confirmed that the optical transmittance values obtained with UV-Spectrometer is the same as that of estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS within uncertainty. The inelastic mean free path (IMFP) estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS is consistent with the IMFP values determined by the Tanuma-Powell Penn (TPP2M) formula [2]. Our results showed that the IMFP of NiO thin films was increased with increasing primary energies. The quantitative analysis of REELS provides us with a straightforward way to determine the electronic and optical properties of transparent thin film materials.

  • PDF