• Title/Summary/Keyword: electrical appliances

Search Result 375, Processing Time 0.03 seconds

Measurements of the Magnetic Fields Produced by Electric Home Appliances (가정용 전기기기에서 발생하는 자장의 측정)

  • Lee, B.H.;Park, J.W.;Eom, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2204-2206
    • /
    • 2000
  • In this paper, the magnetic fields measured experimentally from the electric home appliances were evaluated and the data were discussed on the bases of the international institutes recommendations. It is difficult to insulate magnetic flux completely from electric home appliances and impossible to simulate theoretically because of the different directions and magnitudes of magnetic fields according to the internal current of electric home appliances. The experimental measurements of magnetic flux density were carried out according to the increment of distance in the vicinity of electric home appliances. The magnetic flux density produced by the electric home appliances was drastically dropped with the increment of distance. The measured and analysed results of electric home appliances of 15 including computer monitor, TV, etc. were presented.

  • PDF

Applications of the Silicone Rubber in EHV Electric Appliances (초고압 전력기기에서의 실리콘 고무 응용)

  • 김영호;지응서;박현득;허근도
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.560-564
    • /
    • 1999
  • In general, the main dielectric materials for EHV electric appliances were epoxy, EPDM and Silicone rubber. The Silicone rubber has been rosed so many among them in EHV appliances in the worldwide, especially in Europe and North America. The reason why it is very stable in the thermal, mechanical and electrical environment. Therefore it is still becoming increasingly widespread in the application of the EHV appliances as a main dielectric material. On this study, investigated about real appliances and tested on basic properties of the Silicone rubber compared to organic dielectric material that is EPDM. At the result, the Silicone rubber is more dominant as main dielectric material for EHV appliances than any other organic polymers.

  • PDF

Electrical Fire Hazards Analysis of Electric Iron and Heater Using Fault Tree Analysis

  • Hong, Sung-Ho
    • International Journal of Safety
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 2008
  • The primary goal of this study is to analyze fire hazards of electric home appliances such as electric iron and electric heater using fault tree analysis(FTA). A fault tree(FT) is constructed and used to analyze fire hazards in electric home appliances. The fault tree is built from events that may occur in electric home appliances. The failure rate of basic events are derived from the value of experimental results and reference. And an algorithm analyzing fire in electric home appliances is suggested. We show how fault tree analysis, carried out by means of failure rate, is able to diagnose fire hazards of electric home appliances in a precise manner. We present numerical results such as fire probability of electric home appliances, importance measure, fire cause, etc. It can be helpful in preventing the fire hazards in electric home appliances.

A Case Study of Measuring and Analyzing Electric Energy Usage in University Facilities Using Smart Plug (스마트플러그(IOT)를 이용한 대학시설의 전기에너지 사용량 계측 및 분석 사례 연구)

  • Park, Jun-Young;Lee, Chun-Kyong;Park, Tae-Keun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.27-34
    • /
    • 2018
  • The purpose of this study is to demonstrate and analyze the function of a Smart Plug before and after it is applied on the electrical appliances by controlling standby power usage. The research measures and analyzes the amount of electrical energy used while activating the Smart Plug with two types of appliances in a university facilities. The smart plugs were applied into a Group 1 appliances (Multi-function device, computer, laptop, Air con) which completely hinder the standby power, and a Group 2 appliances (Refrigerator, cold and hot water dispenser) which does not completely hinder the standby powers due to the characteristics of the function. First, the total standby power saving of all electrical appliances (Group 1 and Group 2) using the Smart plug was measured as 4.59%. Second, the energy saving of the Group 1 products was analyzed as 26.43%. Third, the standby power saving of the air conditioners from mid October to early December was measured as 31.06%, during the seasons when air conditioning was not actively in use. The research indicates that all specified appliances did have better energy efficiency with the Smart plug regardless of the amount of energy usage.

Study on Prediction Method for ELF Transient Magnetic Field from Home Appliances (가전기기에서 발생되는 극저주파 과도자계 예측기법 연구)

  • Ju, Mun-No;Yang, Kwang-Ho;Myung, Sung-Ho;Min, Suk-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.616-621
    • /
    • 2002
  • With biological effects by ELF (Extremely Low Frequency) magnetic field generated from power system, the transient magnetic field from electric appliances is a major issue presently. Because the transient magnetic field induces higher current than the power frequency field inside living bodies, transient magnetic field exposure has been much focused. In this paper, it is shown that transient magnetic field from electric home appliances can be characterized as magnetic dipole moment. In this method, the dipole moment vector is assumed by allowing an uncertainty of 6dB in the estimated field. A parameter M that represents biological interaction was applied also. The proposed method was applied to 7 types of appliances (hair drier, heater, VDT, etc.) and their equivalent magnetic dipole moment and harmonic components were estimated. As the results, the useful data for quantifying magnetic field distribution around electric appliances were obtained.

Analysis on Harmonics Characteristics of ELF Magnetic Fields Generated by Electric Appliances (가전기기 발생 극저주파 자계 고조파 특성 해석)

  • Min Suk-Won;Song Ki-Hyun;Yang Kwang-Ho;Ju Mun-No
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • With biological effects by ELF(Extremely Low Frequency) magnetic field generated from power system, the transient magnetic field from electric appliances is a major issue presently. In this paper, we measured magnetic field distributions around electric appliances in view of harmonics and analyzed them by the use of an equivalent magnetic dipole moment method. This method was applied to 19 types of appliances, and their equivalent magnetic dipole moments and harmonic components were determined. The results show that this method is applicable to many appliances and the higher frequency magnetic field may induce higher current inside living bodies.

DC Appliance Safety Standards Guideline through Comparative Analysis of AC and DC Supplied Home Appliances

  • Ahn, Jung-Hoon;Kim, Dong-Hee;Lee, Byoung-Kuk;Jin, Hyun-Cheol;Shim, Jae-Sun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.51-57
    • /
    • 2012
  • This paper provides a safety guideline for DC supplied home appliances through the comparative analysis of existing safety guideline for AC supplied home appliances. For this purpose, a predictive DC home appliance model is suggested and in special international safety standards of AC appliances are also analyzed. Moreover, a DC distribution system is built to verify the validity of the proposed safety guideline. The detailed analyzing process is explained with help of informative experimental results.

Load Profile Disaggregation Method for Home Appliances Using Active Power Consumption

  • Park, Herie
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.572-580
    • /
    • 2013
  • Power metering and monitoring system is a basic element of Smart Grid technology. This paper proposes a new Non-Intrusive Load Monitoring (NILM) method for a residential buildings sector using the measured total active power consumption. Home electrical appliances are classified by ON/OFF state models, Multi-state models, and Composite models according to their operational characteristics observed by experiments. In order to disaggregate the operation and the power consumption of each model, an algorithm which includes a switching function, a truth table matrix, and a matching process is presented. Typical profiles of each appliances and disaggregation results are shown and classified. To improve the accuracy, a Time Lagging (TL) algorithm and a Permanent-On model (PO) algorithm are additionally proposed. The method is validated as comparing the simulation results to the experimental ones with high accuracy.

Economical Review of the E-waste Recycling (E-waste recycling의 경제성(經濟性) 고찰(考察))

  • Oh, Jae-Hyun;Kang, Nam-Kee
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.12-21
    • /
    • 2013
  • Waste electrical and electronic equipment(WEEE or E-waste) is one of the fastest growing waste stream in Korea. The proper management of such equipment has become of major concern for solid waste professionals because of the large growth of the waste stream and the presence of a myriad of toxic materials in it. In this paper, in order to evaluate the economical value of the recycling metallic materials from the E-waste, big size electrical home appliances, small size electrical home appliances, end of life hand phone and PCB(printed circuit board) were reviewed.

Advanced Brushless DC Motor Drive without Position Sensor for Home Appliances

  • Kim, Dae-Kyong;So, Ji-Young;Jung, Dong-Hwa
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.83-90
    • /
    • 2013
  • This paper describes advanced brushless DC motor drive without position sensor for home appliances with compressor to reduce the pulsating currents and vibration. The proposed method limits the motor currents during starting period and reduces commutation torque ripple during sensorless operating period. Experimental results show that the proposed method implemented in an inverter for a BLDC motor driven compressor considerably reduces not only the pulsating currents but also vibration of the home appliances.