• 제목/요약/키워드: electrical and dielectric properties

검색결과 2,240건 처리시간 0.04초

XLPE와 EPDM의 계면에 따른 유전특성과 온도, 전계, 압력의존성 (Temperature, Electric Field, Pressure Dependency and Dielectric properties on the interface between XLPE and EPDM)

  • 김동식;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.109-111
    • /
    • 1997
  • In this paper, we have evaluated temperature, electric field, Pressure dependency and dielectric properties of EPDM XLPE and EPDM/XLPE\`s interface. Temperature dependency of EPDM had great influence with dielectric properties, but pressure and applied voltage of EPDM had no effect on dielectric properties. Dielectric properties of XLPE were influenced by not only temperature but also pressure and applied voltage. We knowed that dielectric properties of EPDM/XLPE were trended toward tendency of those of EPDM

  • PDF

고용량 적층 세라믹 커패시터에서 설계 및 제조공정에 따른 전기적 특성 평가 (Design and Fabrication Process Effects on Electrical Properties in High Capacitance Multilayer Ceramic Capacitor)

  • 윤중락;우병철;이헌용;이석원
    • 한국전기전자재료학회논문지
    • /
    • 제20권2호
    • /
    • pp.118-123
    • /
    • 2007
  • The purpose of this work was to investigate the design and fabrication process effects on electrical properties in high capacitance multilayer ceramic capacitor (MLCC) with nickel electrode. Dielectric breakdown voltage and insulation resistance value were decreased with increasing stack layer number, but dielectric constant and capacitance were increased. With increasing green sheet thickness, dielectric breakdown voltage, C-V and I-V properties were also increased. The major reasons of the effects were thought to be the defects generated extrinsically during fabrication process and interfacial reactions formed between nickel electrode and dielectric layer. These investigations clearly showed the influence of both green sheet thick ness and stack layer number on the electrical properties in fabricating the MLCC.

친환경 GIS용 전력기기의 적용을 위한 에폭시 이종무기물 복합재료의 전기적, 기계적 특성 (Electrical and Mechanical Properties of Epoxy/Heterogeneous Inorganic Composites Materials for the Application of Electric Power GIS Appliances)

  • 박재준
    • 전기학회논문지
    • /
    • 제67권12호
    • /
    • pp.1633-1640
    • /
    • 2018
  • Epoxy resin is a polar thermosetting polymer that is widely employed in different branches of industry and everyday life, due to their stable physical and chemical properties. Of all the polymer materials currently being used in the electrical insulation industry, epoxy resin is the most widely used kind, chosen as the base polymer material in the present study. Composites were prepared according to the mixing ratio (MS: MA, 1: 9, 3: 7, 5: 5, 7: 3, 9: 1)of mixture for Heterogeneous Minerals(Micro Silica:MS, Micro Alumina:MA) (MS+MA). We have investigated for AC electrical insulation breakdown characteristics and the dielectric properties (permittivity, dielectric loss, and conductivity) with frequency changes. The electrical AC insulation breakdown performance was improved with the increase of the mixing ratio of MS according to heterogeneous mineral material mixture(MS+MA). As Dielectric properties, the dielectric constant and dielectric loss increased with decreasing frequency and decreased with increasing MS content ratio of heterogeneous mineral mixture. Tensile strength and flexural strength according to the mixing ratio (MS + MA) of epoxy / heterogeneous mineral mixture were studied by mechanical properties. The performance of mechanical tensile and flexural strength was significantly improved as the fill contents ratio of MS increased.

에폭시/마이크로/나노알루미나 혼합된 멀티-콤포지트의 유전 특성 (Dielectric Properties of Epoxy/Micro/Nano Alumina Multi-Composites)

  • 박재준
    • 한국전기전자재료학회논문지
    • /
    • 제29권9호
    • /
    • pp.565-570
    • /
    • 2016
  • In this work, the complex permittivity of epoxy resins is measured. Epoxy resins, epoxy with micro size fillers and epoxy with micro+nano alumina composites have been evaluated for dielectric properties according to frequency variation. The dielectric spectroscopy measurement and analyses are carried out in the frequency range of $10^{-2}Hz$ to 1MHz and constant to room temperature. The results of dielectric loss suggest that significant improvement in the electrical performance can be expected by using samples containing nano and micro fillers mixture when compared to materials containing only microfillers. As the result, we verified the specific characteristics of dielectric permittivity and dielectric loss namely, relative permittivity become low with improving dispersibility of nano+micro mixture composites and become rise with agglomerate of nano particles.

망목 구조 변화에 따른 에폭시 수지의 유전 특성에 관한 연구 (A Study on the Dielectric Characteristics in Epoxy Resins due to Variation of Network Structures)

  • 김재환;손인환;심종탁;김경환;김명호;최병옥
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권7호
    • /
    • pp.651-658
    • /
    • 1997
  • In this paper, effect of interpenetrating polymer network(IPN) introduction on the dielectric properties, heat proof properties, internal structure and defects of the Epoxy/SiO$_2$composite materials, were investigated. we reported a relation between network structures and electrical properties, especially dielectric characteristics with variation of network structures for epoxy composite materials. According to experimental results, the specimens which have single network structures have lower dielectric constant than interpenetrating polymer network(IPN) specimens, but have relatively larger dependency to variation of temperature and frequency. It was confirmed that change of structures is attained by introducing of IPN to insulating materials. Therefore it is counted that introduction of multiple structure including IPN is necessary to improve heat proof and electrical properties.

  • PDF

유기 발광 소자의 바이어스 전압에 따른 유전 특성 (Dielectric Properties depending on Bias Voltage in Organic Light-emitting Diodes)

  • 오용철;이준웅
    • 한국전기전자재료학회논문지
    • /
    • 제18권11호
    • /
    • pp.1038-1042
    • /
    • 2005
  • We have investigated dielectric properties depending on bias voltage in organic light-emitting diodes using 8-hydroxyquinoline aluminum $(Alq_3)$ as an electron transport and emissive material. We analyzed the dielectric properties of organic light-emitting diodes using impedance of characteristics. Impedance characteristics was measured complex impedance Z and phase $\theta$ in the frequency range of 40 Hz to $10^8$ Hz. We obtained complex electrical conductivity, dielectric constant, and loss tangent $(tan\delta)$ of the device at room temperature. From these analyses, we are able to interpret a conduction mechanism and dielectric properties contributed by an interfacial and orientational polarization.

Electrical and Mechanical Properties of Ordered Mesoporous Silica Film with HMDS Treatment

  • Ha, Tae-Jung;Choi, Sun-Gyu;Reddy, A. Sivasankar;Yu, Byoung-Gon;Park, Hyung-Ho
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.159-159
    • /
    • 2007
  • In order to reduce a signal delay in ULSI, low resistive metal and intermetal dielectric material of low dielectric constant are required. Ordered mesoporous silica film is proper to intermetal dielectric due to its low dielectric constant and superior mechanical properties. In this study, ordered mesoporous silica films was synthesized using TEOS (tetraethoxysilane) / MTES (methyltriethoxysilane) mixed silica precursor and Brij-$76^{(R)}$ surfactant. These films had the porosity of 40% and dielectric constant of 2.5. To lower dielectric constant, the ordered mesoporous silica films were surface-modified by HMDS (hexamethyldisilazane) treatment. HMDS substituted -OH groups on the surface of silica wall for -Si$(CH_3)_3$ groups. After the HMDS treatment, ordered mesoporous silica films were calcined at various calcination temperatures. Through the investigation, it was concluded that the proper calcination temperature is necessary as aspects of structural, electrical, and mechanical properties.

  • PDF

절연지의 기계적 및 전기적 물성에 대한 연구 (Study on the electrical and mechanical properties of insulating paper)

  • 엄승욱;김귀열
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권4호
    • /
    • pp.413-417
    • /
    • 1995
  • In order to elucidate the electrical and mechanical properties of insulating paper, it is desirable to study the performances of tensile strength, dielectric constant, dielectric strength. In this work, we constructed the characteristics depending on change of fabrication condition, and these specimens were manufactured by hot press method. As a result, tensile strength was about 75MPa and breakdown was above 5 kV/mm at the minimum value.

  • PDF

소결 온도에 따른 비납계 NKN-BNT-BT 세라믹의 전기적, 구조적 특성

  • 이성갑;남성필;노현지;배선기;이영희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.104-104
    • /
    • 2009
  • In this study, both structural, dielectric and piezoelectric properties of the NKN-0.96BNT-0.04BT ceramics were investigated. All samples of the NKN-0.96BNT-0.04BT ceramics were fabricated by conventional mixed oxide method with Pt electrodes. We report the improved dielectric and piezoelectric properties in the perovskite structure composed of the NKN, BNT and the BT ceramics. We investigated the effects of NKN, BT on the structural and electrical properties of the NKN-0.93BNT-0.07BT ceramics. The dielectric properties and piezoelectric properties of the NKN-0.93BNT-0.07BT ceramics were superior to those of single composition NKN, NKN-BNT and those values for the NKN-0.93BNT-0.07BT ceramics were 861 and 1.12%.

  • PDF

Effect of Particle Size and Dispersion on Dielectric Properties in ZnO/Epoxy Resin Composites

  • Yang, Wenhu;Yi, Ran;Yang, Xu;Xu, Man;Hui, Sisi;Cao, Xiaolong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권3호
    • /
    • pp.116-120
    • /
    • 2012
  • In this paper, ZnO-Epoxy nanocomposites (NEP) were prepared and epoxy composites that contain 5 wt% micro ZnO (MEP) and deliberately not well dispersed nano ZnO (NDNEP) were also prepared for purpose of comparison. The effects of the particle size and dispersion of ZnO on dielectric properties of epoxy resin were chiefly studied. Test results showed that: at a loading of 5 wt%, the three epoxy composites seem to have no significant difference on resistivity compared to epoxy resin; Dielectric constants of all the epoxy composites are also basically the same but they are bigger compared to that of the pure epoxy resin (unfilled); Dielectric dissipation factors ($tan{\delta}$) of NDNEP is greater than that of NEP and MEP. NEP has the minimum dielectric loss factor, whereas dielectric loss factors of the three epoxy composites are larger than that of the pure epoxy resin. The decreasing order of electrical breakdown strength for the three epoxy composites and for the pure epoxy resin is as follows: NEP>MEP>NDNEP>EP. Finally, in order to explain the experimental results the aggregation interface phase was proposed. Furthermore, addition of well dispersed nano filler has proved to have a positive effect on the improvement of the dielectric properties of epoxy resin.