• Title/Summary/Keyword: electric wire

Search Result 744, Processing Time 0.028 seconds

Gasification Study of Datong Coal in a Bench Scale Unit of Entrained Flow Gasifier (Datong탄에 대한 Bench Scale Unit급 분류층 석탄가스화 연구)

  • Ryu, Si-Ok;Kim, Jae-Ho;Lee, Hyo-Jin;Lee, Jae-Goo;Park, Tae-Jun;An, Dal-Hong;Park, Ho-Young
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.96-103
    • /
    • 1997
  • Coal gasification experiments were performed to characterize the bench scaled unit of 0.5∼1.0 T/D entrained coal gasifier developed by KIER. Datong coal from China was selected for this study. The system was operated at the temperature range of 1300∼1550$^{\circ}C$, with 62.5% of coal water mixture on the basis of dry coal. Oxygen and slurry mixture were preheated prior to feeding into burner and the ratio of oxygen/coal was in the range of 0.8∼1.2. In the preparation of coal water mixture, 0.3 wt% of CWM1002 and 0.05 wt% of NaOH wire added to reduce viscosity as well as to enhance theological properties of slurry. The resultant gaseous products consist primarily of hydrogen, carbon monoxide, carbon dioxide, and minor amounts of methane. Formation of H$_2$and CO was increased, while CO$_2$was decreased as the reacting temperature being increased due to the char-CO$_2$reaction. Maximum production of H$_2$and CO occurred in the O$_2$/coal ratio of 0.9 at 1530$^{\circ}C$. Heating values of product gases were in the range of 1700∼2400 kcal/N㎥.

  • PDF

Evaluation of Compaction and Thermal Characteristics of Recycled Aggregates for Backfilling Power Transmission Pipeline (송배전관로 되메움재로 활용하기 위한 국내 순환골재의 다짐 및 열적 특성 평가)

  • Wi, Ji-Hae;Hong, Sung-Yun;Lee, Dae-Soo;Park, Sang-Woo;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.17-33
    • /
    • 2011
  • Recently, the utilization of recycled aggregates for backfilling a power transmission pipeline trench has been considered due to the issues of eco-friendly construction and a lack of natural aggregate resource. It is important to identify the physical and thermal properties of domestic recycled aggregates that can be used as a backfill material. This paper evaluated thermal properties of concrete-based recycled aggregates with various particle size distributions. The thermal properties of the recycled aggregates and river sand provided by local vendors were measured using the transient hot wire method and the transient needle probe method after performing the standard compaction test. The needle probe method considerably overestimated the thermal resistivity of recycled aggregates especially at the dry of optimum water content because of experiencing disturbance while the needle probe is being inserted into the specimen. Similar to silica sand, the thermal resistivity of recycled aggregates decreased when the water content increased at a given dry density. Also, this paper evaluated some of the existing prediction models for the thermal resistivity of recycled aggregates with the experimental data, and developed a new prediction model for recycled aggregates. This study shows that recycled aggregates can be a promising backfill material substituting for natural aggregates when backfilling the power transmission pipeline trench.

A Study on the Fabrication of Heater based on Silicone Rubber (실리콘러버 기반의 히터제작에 관한 연구)

  • Jeong-Oh Hong;Jae Tack Hong;Shin-Hyeong Choi
    • Advanced Industrial SCIence
    • /
    • v.2 no.2
    • /
    • pp.9-15
    • /
    • 2023
  • Since silicone rubber heaters are flexible, they can be directly attached or installed in objects to be heated even in flat, curved or three-dimensional shapes. Since the current heating method heats the entire object to be heated and raises it to a required temperature, ignoring areas or positions where heat is not required, partial intensive heating cannot be performed. When using multi-heating zones, rather than heating the entire object to be heated, only the parts that need heat are intensively heated according to the process, so it is possible to heat quickly by local location by applying different amounts of heat with a small amount of electric capacity to each place that needs heat, and heat energy can reduce. In this study, the temperature and heating time of the partially concentrated region in the multi-heating region structure are measured so that a uniform temperature or temperature difference occurs in the region requiring thermal fusion. In order to determine the optimal power density range and reduce capacitance, the safety of a silicon rubber heater manufactured with a multi-heating zone structure is investigated. If the silicon rubber heater is manufactured in a multi-heating method, the multi-intensive heating technology can be ideally applied to all heating processes.

Low price type inspection and monitoring system of lithium ion batteries for hybrid vessels (하이브리드 선박용 리튬 배터리의 저가형 감시시스템 구현)

  • Kwon, Hyuk-joo;Kim, Min-kwon;Lee, Sung-geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.28-33
    • /
    • 2016
  • Batteries are used for main power engine in the fields such as mobiles, electric vehicles and unmanned submarines, for starter and lamp driver in general automotive, for emergency electric source in ship. These days, lead-acid and the lithium ion batteries are increasingly used in the fields of the secondary battery, and the lead-acid battery has a low price and safety comparatively, The lithium ion battery has a high energy density, excellent output characteristics and long life, whereas it has the risk of explosion by reacting with moisture in the air. But Recently, due to the development of waterproof, fireproof, dustproof technology, lithium batteries are widely used, particularly, because their usages are getting wider enough to be used as a power source for hybrid ship and electric propulsion ship, it is necessary to manage more strictly. Hybrid ship has power supply units connected to the packets to produce more than 500kWh large power source, and therefore, A number of the communication modules and wires need to implement the wire inspection and monitor system(WIIMS) that allows monitoring server to transmit detecting voltage, current and temperature data, which is required for the management of the batteries. This paper implements a low price type wireless inspection and monitoring system(WILIMS) of the lithium ion battery for hybrid vessels using BLE wireless communication modules and power line modem( PLM), which have the advantages of low price, no electric lines compared to serial communication inspection systems(SCIS). There are state of charge(SOC), state of health(SOH) in inspection parts of batteries, and proposed system will be able to prevent safety accidents because it allows us to predict life time and make a preventive maintenance by checking them at regular intervals.

Removal of Impurities from Waste Carbon Sludge for the Recycling (폐 카본슬러지의 재활용을 위한 不純物 분리 제거)

  • 이성오;국남표;오치정;김선태;신방섭
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.51-59
    • /
    • 2001
  • Impurities removal from waste carbon black was carried out to produce high-grade carbon black. A large amount of hydrophilic carbon black is produced as a byproduct of the hydrogen production process by flame decomposition of water. Due to its impurities content such as sulphur, iron, ash, etc., it can only be used as low-grade carbon or burnt out. High-grade hydrophilic carbon black is 3~5 times more expensive than oil-based carbon black because of high production cost associated with process complexly and pollutant treatment. Hydrophilic carbon is normally used for conductive materials for batteries, pigment for plastics, electric wire covering, additives for rubber, etc. In these applications, impurity content must be blow 1 fe. In this study, magnetic separation, froth flotation and ultrasonic treatment were employed to remove impurities from the low-grade hydrophilic carbon black. Results showed that the ash, iron and sulphur content of product decreased to less than 0.01 wt.%, 0.01 wt.% and 0.3 wt % respectively and the surface area of product was about 930 $m^2$/g for conductive materials.

  • PDF

Secondary Science Teachers' Perception about and Actual Use of Visual Representations in the Teaching of Electromagnetism (중등 전자기 수업에서 사용하는 시각적 표상에 대한 교사 인식 및 활용 실태)

  • Yoon, Hye-Gyoung;Jo, Kwanghee;Jho, Hunkoog
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.2
    • /
    • pp.253-262
    • /
    • 2017
  • This study aims at investigating the perceptions of science teachers about the role of visual representations in the teaching of electromagnetism, and finding out how science teachers use visual representations in their teaching of electromagnetism and the difficulties they experience in dealing with those representations. A total of 121 science teachers responded to the online survey. The results showed that most of the teachers agreed to the significance of using visual representations in the classroom but regarded their role as means of simply delivering science knowledge rather than constructing or generating knowledge. For the three visual representations widely used in teaching of electromagnetism in secondary schools (electrostatic induction on electroscope, magnetic field around current carrying wire, structure and principle of electric motor), the teachers preferred teacher-centered use of visual representations rather than student-centered and teacher's construction of representations were the most frequent among four types of use; interpretation, construction, application, and evaluation. The difficulties of teaching with these three visual representations were categorized into several factors; teachers, students, the characteristics of the representations, and lack of resources and classroom environment. Teachers' limited perceptions about the role of visual representations were associated with the ways of using visual representations in their teaching. Implications for the effective use of visual representations for science learning and teaching were discussed.

A Study of Electromagnetic Actuator for Electro-pneumatic Driven Ventricular Assist Device

  • Jung Min Woo;Hwang Chang Mo;Jeong Gi Seok;Kang Jung Soo;Ahn Chi Bum;Kim Kyung Hyun;Lee Jung Joo;Park Yong Doo;Sun Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.393-398
    • /
    • 2005
  • An electromechanical type is the most useful mechanism in the various pumping mechanisms. It, however, requires a movement converting system including a ball screw, a helical cam, or a solenoid-beam spring, which makes the device complex and may lessen reliability. Thus, the authors have hypothesized that an electromagnetic actuator mechanism can eliminate the movement converting system and that thereby enhance the mechanical reliability and operative simplicity of an electro­pneumatic pump. The purpose of this study was to show a novel application of electromagnetic actuator mechanism in pulsatile pump and to provide preliminary data for further evaluations. The electromagnetic actuator consists of stators with a single winding excitation coil and movers with a high energy density neodymium-iron-boron permanent magnet. A 0.5mm diameter wire was used for the excitation coil, and 1000 turns were wound onto the stators core with parallel. A prototype of extracorporeal electro-pneumatic pump was constructed, and the pump performance tests were performed using a mock system to evaluate the efficiency of the electromagnetic actuator mechanism. When forward and backward electric currents were supplied to the excitation coil, the mover effectively moved back and forth. The nominal stroke length of the actuator was 10mm. The actuator dimension was 120mm in diameter and 65mm in height with a mass of 1.4kg. The prototype pump unit was 150mm in diameter, 150mm in thickness and 4.5kg in weight. The maximum force output was 70N at input current of 4.5A and the maximum pump rate was 150 beats per minute. The maximum output was 2.0 L/minute at a rate of 80bpm when the afterload was 100mmHg. The electromagnetic actuator mechanism was successfully applied to construct the prototype of extracorporeal electro­pneumatic pump. The authors provide the above results as a preliminary data for further studies.

Improved Treatment Technique for the Reuse of Waste Solution Generated from a Electrokinetic Decontamination System (동전기제염장치에서 발생한 폐액의 재사용을 위한 개선된 처리기술)

  • Kim, Wan-Suk;Kim, Seung-Soo;Kim, Gye-Nam;Park, Uk-Ryang;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • A large amount of acidic waste solution is generated from the practical electrokinetic decontamination equipments for the remediation of soil contaminated with uranium. After filtration of uranium hydroxides formed by adding CaO into the waste solution, the filtrate was recycled in order to reduce the volume of waste solution. However, when the filtrate was used in an electrokinetic equipment, the low permeability of the filtrate from anode cell to cathode cell due to a high concentration of calcium made several problems such as the weakening of a fabric tamis, the corrosion of electric wire and the adhension of metallic oxides to the surface of cathode electrode. To solve these problems, sulfuric acid was added into the filtrate and calcium in the solution was removed as $CaSO_4$ precipitate. A decontamination test using a small electrokinetic equipment for 20 days indicated that Ca-removed waste solution decreased uranium concentration of the waste soil to 0.35 Bq/g, which is a similar to a decontamination result obtained by distilled water.

Analysis of the Risk of Heat Generation due to Bolt Loosening in Terminal Block Connector Parts (볼트풀림에 의한 터미널 블록의 접속부 발열 위험성 분석)

  • Yeon, Yeong-Mo;Kim, Seung-Hee
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.67-75
    • /
    • 2020
  • In this study, the risk of heat generation due to normal and overload currents that vary with the abnormal loosening angle of wire-connecting bolts were identified. The risks were analyzed based on the thermal characteristics to minimize the carbonization accidents of terminal blocks inside distribution panels typically used in industrial sites. We applied a method for measuring the heating temperature and temperature variations in the terminal blocks in real-time by installing a resistance temperature detector sensor board in the terminal block. The experimental results showed that the terminal block model with a low-rated current exhibited a higher heating temperature, thus, confirming the need to select the terminal block capacity based on load currents. Additionally, the higher the rated current of the terminal block with a high-rated current and the higher the degree of loosening, the faster the carbonization point. Such heating temperature monitoring enabled real-time thermal temperature measurement and a step-by-step risk level setting through thermal analysis. The results of the measurement and analysis of carbonization risks can provide a theoretical basis for further research regarding the risk of fire due to carbonization. Furthermore, the deterioration measurement method using the temperature sensor board developed in this study is widely applicable to prevent fires caused by poor electrical contact as well as risk-level management.

A study on the management of harmful working environments for Increase of Labor productivity. (노동생산성 향상을 위한 유해작업환경관리에 관한 연구)

  • 조태웅;유익현;박성애
    • Journal of Environmental Health Sciences
    • /
    • v.3 no.1
    • /
    • pp.27-44
    • /
    • 1976
  • This study was carried out to evaluate the harmful factors in working environments and to investigate the labor productivity after improvement of environments, surveying 93 industrial establishments of 10 industries located in Youngdeungpo industrial area in Seoul. The results obtained were as follows: 1) The highest noise level of 125dB(A) was indicated at the rolling process of transport equipment manufacturing industry. 2) The best illumination level was shown in precise machinery industry and the worst was indicated in rubber products, metallic products and transport equipment manufacturing industries. 3) Thermal conditions were above threshold limit value (TLV) at more than two processes of all industries except printing industry. 4) The highest dust concentration was determined in textile and wearing manufacturing industry. 5) Organic solvents were detected at 52 processes in 93 industrial establishments and 33 processes of them showed higher than TLV. The results about harmful chemicals were as follows: a) sulfur dioxide ($SO_2$)was determined higher than TLV on welding process of metallic product manufacturing industry and heat treatment process of transport equipment manufacturing industry. b) Carbon monoxide (CO) concentration was 700ppm at heat treatment process of transport equipment manufacturing industry, indicating 14 times of TLV. c) vinylchloride concentration in the air of PVC raw material mixing process and PVC preparation process of chemical product manufacturing industry was determined higher than TLV. d) Hydrochloride (HCl) concentration in the air of wire expanding process of transport equipment manufacturing industry was determined higher than TLV. 7) Higher values of lead concentration than TLV were determined at lead welding metallic product manufacturing industry and type planting process of process of printing industry, $1.8mg/m^3$ and $0.3mg/m^3$ respectively. 9) 22, 968 of 52, 855 workers (i.e. 43.5%) in 93 industries were exposed to various harmful agents. 10) It was found that the improvement of illumination in electric apparatus manufacturing industry (from 20~40 lux to 420 lux) resulted in an increase in productivity of 6.5% per capita and a decrease in faulty products of 19%. 11) Improvement of environments using local exhaust ventilation system resulted in a decrease of harmful substances lower than TLV and an increase in productivity of 11.4%. 12) Improvement of shovelling tools based on ergonomics resulted in a reduction in energy expenditure of 25.3% and an increase in productivity of 32.2% per capita.

  • PDF