• Title/Summary/Keyword: electric wave

Search Result 794, Processing Time 0.034 seconds

Characteristics of Transparent Conductive Tin Oxide Thin Films on PET Substrate Prepared by ECR-MOCVD (PET 기판상에 ECR 화학증착법에 의해 제조된 SnO2 투명도전막의 특성)

  • Kim, Yun Seok;Jeon, Bup Ju;Ju, Jeh Beck;Sohn, Tae Won;Lee, Joong Kee
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.85-91
    • /
    • 2005
  • $SnO_2$ films were prepared at room temperature under a $(CH_3)_4Sn-H_2-O_2$ atmosphere in order to obtain transparent conductive polymer by using ECR-MOCVD (Electron Cyclotron resonance -Metal Organic Chemical Vapor Deposition) system. The electrical properties of the films were investigated as function of process parameters such as deposition time, microwave power, magnetic current power, magnet/showering/substrate distance and working pressure. An increase in microwave power and magnetic current power brought on $SnO_2$ film formation with low electric resistivity. On the other hand, the effects of process parameters described above on optical properties were insignificant in the range of our experimental scope. The transmittance and reflectance of the films prepared by the ECR-MOCVD exhibited their average values of 93-98% at wave length range of 380-780 nm and 0.1-0.5%, respectively. The grain size of the $SnO_2$ films that are also insensitive with the process parameters were in the range of 20-50 nm. On the basis of experimental data obtained in the present study, electrical resistivity of $7.5{\times}10^{-3}ohm{\cdot}cm$, transmittance of 93%, and reflectance of 0.2% can be taken as optimum values.

Enhanced Transdermal Delivery of Procaine Hydrochloride by lontophoresis -Comparison of Synergic Effect of High Voltage Current and Ultrasound- (이온도입에 의한 염산프로카인의 경피전달 증대 -고전압전류 및 초음파 병행의 상승효과 비교-)

  • Lee, Jong-Sook;Kim, Kyoung-Won;Lee, Jae-Hyoung;Choi, Yeong-Wook;Lee, Jae-Hwi
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.3
    • /
    • pp.185-192
    • /
    • 2006
  • The purpose of this study was to determine the effects of iontophoresis on transdermal delivery of procaine hydrochloride in healthy volunteers, as well as to the synergic effect of high voltage current or ultrasound on the efficacy of transdermal delivery of iontophoresis. Forty healthy volunteers were randomly assigned to four groups topical application group (TA), iontophoresis group (IT), pre-treatment of high voltage current stimulation with iontophoresis (HVS + IT), and pre-treatment of ultrasound application with iontophoresis (US + IT). All subjects received procaine iontophoresis on the forearm using direct current with 4 mA f3r 15 minutes. All subject was measured the duration of local anesthesia, pressure pain threshold, pain perception threshold using rectangular wave at 0.2 ms, 1 ms, 50 ms of rectangular current stimulation after procaine iontophoresis. For comparisons of the sensory characteristics and efficacy of iontophoresis between the groups, an one-way ANOVA and Kruskal-Wallis were used. The significant difference the duration of local anesthesia were found between the groups (p<0.001). The local anesthetic duration of IT, HVS+IT were significantly longer than TA. Meanwhile, the local anesthetic duration of US+IT was significantly longer than HVS+IT, IT and TA group (p<0.05). Also, the pressure pain threshold, pain perception threshold at 0.2 ms, 1 ms, 50 ms were significant difference between the groups (p<0.001). All sensory characteristics including pressure pain threshold, pain perception threshold of IT, HVS+IT was significantly increased than TA, whereas, US+1T was significantly increased HVS+1T, IT and TA (p<0.05). This study showed that the procaine iontophoresis have increase the duration of local anesthesia concomitantly pressure pain threshold and pain perception threshold of sensory nerve fibers such as $A-{\beta}$, $A-{\delta}$ and C fiber. This findings suggest that the iontophoresis enhanced the transdermal delivery of drug ions in vivo. The combination of ultrasound application and iontophoresis synergized the transdermal delivery of drug ions. It is suggests that an electric field, mechanical and heating property of ultrasound may contribute to synergic effect due to temporary changes of structure in the stratum corneum.

Effects of Octreotide on the Contractility of Isolated Rat Vas Deferens (흰쥐 정관의 수축성에 미치는 Octreotide의 영향)

  • Jang, Sun-Ae;Kwon, Oh-Cheol;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.10 no.1
    • /
    • pp.144-156
    • /
    • 1993
  • This study was performed to investigate the effect of octreotide on the contractility of rat vas deferens. The smooth muscle strips isolated from the prostatic portion were myographied in isolated organ bath, Electric field stimulation (monophasic square wave, duration: 1 mSec, voltage : 50 V, frequency : 5 Hz or 30 Hz, train: 10 Sec) produced reproducible contraction. The contraction was composed of two component, first phasic component (FPC) and second tonic component (STC). These contractions were abolished by tetrodotoxin ($1{\mu}M$). Octreotide inhibited the field stimulation induced contractions both FPC and STC concentration-dependently. The FPC was decreased by a desentization of purinergic receptor by pretreatment of mATP, and the STC was decreased by pretreatment of reserpine(3 mg/kg, IP) 24 hours before experiments. Octreotide reduced the field stimulation induced contraction in the presence of mATP and of reserpinized muscle strips. The inhibitory effect of octreotide was more potent at 5 Hz than at 30 Hz. Octreotide did not affect basal ton and exogenous norepinephrine- or ATP-induced contraction. These results suggest that octreotide inhibit the contractility of the isolated rat vas deferens by inhibition of the release of neurotransmitters, both ATP and norepinephrine from adrenergic nerve terminal.

  • PDF

The efficiency Analysis of study using brainwave measurement device (Biopac 뇌파측정 장치를 이용한 학습의 효율성 분석)

  • An, Young-Jun;Lee, Chung-Heon;Park, Mun-Kyu;Ji, Hoon;Lee, Dong-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.951-953
    • /
    • 2015
  • Learning for thinking says the behavior of the organism changes as a result of practice or experience. It is very difficult to identify focusing ability objectively when students study. But, brain of the body is not so. EEG signal means continuously electric records of brain potential variation between two points on the scalp when brain activities take place. In types of EEG, there are delta(0~4Hz), theta(4~8Hz), alpha(8~13Hz), beta(13~30Hz) and gamma waves(30~50Hz). SMR waves and Mid-beta waves appear when focused for studying. Part for the most influence on concentrating reported that Mid-beta waves. In relation to brain activities, EEG has been actively researched for evaluating brain focus index system during learning and study. So, By using Biopac system for this study, measured brain wave was converted into FFT for extracting Mid-beta domain signals that are related to learning after giving focus invoked subjects to a small number of people. When concentrating, we measured the change in the power of the Mid-beta frequency domain and presented a correlation. Based on these results, we analyzed whether students are concentrated objectively on learning or not. and hope to offer more efficient learning method.

  • PDF

An Influence of Unit-Water Content Distribution in Ready-Mixed Concrete on Strength and Durability of Concrete (레미콘 단위수량 산포가 콘크리트 강도 및 내구성에 미치는 영향)

  • Woo, Young-Je;Lee, Han-Seung;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.375-381
    • /
    • 2008
  • Various problems such as durability degradation may happen when extra water is added to concrete. Because of these reasons, the change of water content is managed by using rapid evaluation method of unit water content such as electric capacity method, heat drying method making use of micro wave, unit capacity mass method among various methods. Especially, in Japan, guidance for the change of water content ($\pm$ 10, 15, 20 kg/$m^3$ etc.) were regulated and used. However, it is the real situation that the guidance which were regulated in South Korea evaluate suitability only considering production and measurement error under the circumstances which are not considering the degree of durability degradation. Therefore, this study tries to investigate the influence of addition of extra water in the concrete on the durability degradation of concrete when it was added by artificial manipulation or by management error. From the test results, a guideline of the contents of extra water for the quality control is suggested with the consideration of the degree of durability degradation and the probable error resulted from the addition of extra water. The contents of extra water for tests are set as 0, 15, 25, 35 kg/$m^3$. To examine the durability degradation of concrete, freezing and thawing, carbonation, chloride penetration and compressive strength are tested.

Soft Plasma Flash X-ray Generator Utilizing a Vacuum Discharge Capillary

  • Sato, Eiichi;Hayasi, Yasuomi;Usuki, Tatsumi;Sato, Koetsu;Takayama, Kazuyoshi;Ido, Hideaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.400-403
    • /
    • 2002
  • The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments were primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -10.8 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 ${\mu}$m aluminum filter were less than 30 ${\mu}$s, and we detected the aluminum characteristic x-ray intensity using a 6.8 ${\mu}$m aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted and diffused greatly after passing through two slits.

  • PDF

Analysis of Penetration Phenomenon of High Altitude Electromagnetic Pulse into Buried Facilities with Various Moisture Content and Depth (수분 함유량 및 지하 구조물 깊이에 따른 고고도 전자기파(HEMP) 투과 현상 분석)

  • Kang, Hee-Do;Oh, Il-Young;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.644-653
    • /
    • 2013
  • In this paper, a formulation for obliquely incident electromagnetic wave has been presented for an analysis of highpower electromagnetic pulse penetration into multilayered dispersive media. Based on generalized models of measured dielectric constants and propagation channels reflecting the Earth's general features, the propagation phenomenon of the obliquely incident early-time(E1) high altitude electromagnetic pulse(HEMP) is analyzed. In addition, the polarization and critical angle are also considered. It is found that the total reflection occurs at an incident angle of about 38 degrees at the soil-rock interface, and that the parallel-polarized E1 HEMP penetrates better than the perpendicular-polarized one. The peak level of the penetrating electric field is found to be 5.6 kV/m at normal incidence, regardless of the type of polarization, and E1 HEMP is greatly reduced near the critical angle. Moreover, the penetrating E1 HEMP is analyzed as a variation of moisture content and depth of materials, resulting E1 HEMP could be useful in determining the levels of shielding required for buried facilities.

A Study on the High Frequency Ultrasonic Attenuation Characterization in Artificially Aging Degraded 2.25Cr-1Mo Steel (2.25Cr-1Mo 강 인공 열화재의 고주파수 초음파 감쇠특성에 관한 연구)

  • Park, Ik-Keun;Park, Un-Su;Kim, Chung-Seok;Kim, Hyun-Mook;Kwun, Sook-In;Byeon, Jai-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.439-445
    • /
    • 2001
  • The destructive method is reliable and widely used lot the estimation of material degradation but, it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials used at high temperature by nondestructive evaluation such as electric resistance method, replica method, Barkhausen noise method, electro-chemical method and ultrasonic method are strongly desired. Ultrasonic nondestructive evaluation technique has been reported good to attain efficiency of measurement, high sensitivity of measurement, and rapidity and reliability of result interpretation. In this study, it was verified experimentally the feasibility of the evaluation of degraded 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at $630^{\circ}C$ by high frequency longitudinal wave method investigating the change of attenuation coefficient by FFT analysis and wavelet transform. Because of carbide precipitation increase and spheroidization near grain boundary of microstructure to aging degradation, attenuation coefficient had a tendency to increase as degradation proceeded. It was identified possibly to evaluate degradation using the characteristics of high-frequency ultrasonics. Frequency dependence of ultrasonic attenuation coefficient to aging degradation appeared large, which made sure that attenuation coefficient is an important parameter for evaluation of aging degradation.

  • PDF

An Experimental Study on the Application of LIBS for the Diagnosis of Concrete Deterioration (콘크리트 열화 진단의 LIBS 적용을 위한 실험적 연구)

  • Woo, Sang-Kyun;Chu, In-Yeop;Youn, Byong-Don
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.140-146
    • /
    • 2017
  • It is laser induced breakdown spectroscopy(LIBS) that enables qualitative and quantitative analysis of the elements contained in unknown specimen by comparing the wavelength characteristics of each element obtained from the spectral analysis of the standard specimen with the wavelength analysis results from unknown specimens. In this study, the applicability of LIBS to the analysis of major deterioration factors affecting concrete durability was experimentally analyzed. That is, the possibility of applying LIBS to the diagnosis of concrete deterioration by studying the quantitative detection of harmful deteriorating factors on chloride, sulfate and carbonated mortar specimens using LIBS was studied. As a result of LIBS test for each chloride and sulfate specimen, the LIBS spectral wavelength intensity of chlorine and sulfur ions increased linearly with increasing concentration. Carbon ion LIBS spectral wave intensities of carbonated specimens increased nonlinearly over the duration of carbonation exposure. From the above results, it can be partially confirmed that LIBS can be applied to the diagnosis of concrete deterioration. In case of concrete carbonation, it is presumed that carbon content is contained in the cement itself and is different from the detection of chloride and sulfate specimen. Therefore, it is considered that more various parameter studies should be performed to apply LIBS to concrete carbonation.

Improvement of Thermal Stability of Optical Current Sensors Based on Polymeric Optical Integrated Circuits for Quadrature Phase Interferometry (사분파장 위상 간섭계 폴리머 광집적회로 기반 광전류센서의 온도 안정성 향상 연구)

  • Chun, Kwon-Wook;Kim, Sung-Moon;Park, Tae-Hyun;Lee, Eun-Su;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.249-254
    • /
    • 2019
  • An optical current sensor device that measures electric current by the principle of the Faraday effect was designed and fabricated. The polarization-rotated reflection interferometer and the quadrature phase interferometer were introduced so as to improve the operational stability. Complex structures containing diverse optical components were integrated in a polymeric optical integrated circuit and manufactured in a small size. This structure allows sensing operation without extra bias feedback control, and reduces the phase change due to environmental temperature changes and vibration. However, the Verdet constant, which determines the Faraday effect, still exhibits an inherent temperature dependence. In this work, we tried to eliminate the residual temperature dependence of the optical current sensor based on polarization-rotated reflection interferometry. By varying the length of the fiber-optic wave plate, which is one of the optical components of the interferometer, we could compensate for the temperature dependence of the Verdet constant. The proposed optical current sensor exhibited measurement errors maintained within 0.2% over a temperature range, from 25℃ to 85℃.