• Title/Summary/Keyword: electric traction system

Search Result 229, Processing Time 0.03 seconds

Study of Electric Charge Saving Plan Using High-speed Charging Wireless Railway System (급속충전방식 무가선 전동차 시스템을 이용한 전기요금 절감 방안 연구)

  • Go, Hyo-Sang;Cho, In-Ho;Ryu, Joon-Hyoung;Kim, Gil-Dong
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.31-42
    • /
    • 2017
  • Many studies have been performed to reduce electric consumption in railway systems. Due to its low conduction loss and high regenerative braking efficiency characteristics, the ESS powered railway system is chosen as a promising candidate for future railway systems. This paper introduces the ESS powered railway system and analyzes current power charge calculation methods that have been set up by KEPCO (Korea Electric Power Corporation). Based on the analysis, this paper proposes two different power charge reduction methods for the railway system. One is to smooth the peaks of traction energy consumption by supplying additional energy to the grid. The other is to save electric charge by reducing electric energy consumed by the railway during the energy peak time, 2 p.m.~5 p.m., which has highest 'Won/kWh' rates. To verify the effectiveness of the proposed method, the power charge of Seoul Metro Line 2 is recalculated using the method.

The Comparison of PWM Converter's Topology in Electric Train (철도차량용 PWM 컨버터방식 비교)

  • 이현원;김남해
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.97-100
    • /
    • 1999
  • AC to DC single phase PWM converter for traction application requires rated high power and voltage. Therefor, series or parallel operation converters are necessary with considering the limitation of the power device specification. This paper compares the characteristic between two parallel operation of conventional PWM converter and Single phase three level converter about comparison of power circuit, cooling system control method and harmonic current by computer simulation.

  • PDF

A Study on the Life Cycle Establishment and Improvement of Main Parts for Electric Locomotive (전기기관차 주요부품의 수명주기 설정 및 개선방안에 관한 연구)

  • Lee, Doek Koo;Lee, Hi Sung
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • The 8200-unit electric locomotive, which is a high-efficiency multipurpose electric locomotive, is a German model, namely BR152 series ES64F, and it is manufactured to suit the operating conditions in Korea. Since 2003, 83 locomotives have been introduced in Korea, and they have been operating in the general railway sector for both passenger and freight transport. Although more than 15 years have passed since their first introduction, owing to the characteristics of vehicles introduced overseas, responding promptly to failures has been difficult owing to problems related to factors such as transfer of technology and procurement of parts for maintenance. Furthermore, there have been difficulties in operating the locomotives on the basis of the manufacturer-recommended time-between-overhaul (TBO) cycle. Therefore, a new TBO should be determined. To support the development of a reliability-based maintenance system, this study conducted a reliability and TBO analysis by using failure data obtained from KOVIS, and future management measures are presented.

Comparison of Control Strategies for Military Series-Type HEVs in Terms of Fuel Economy Based on Vehicle Simulation (시뮬레이션을 이용한 군용 직렬형 HEV 의 주행 전략에 따른 연비 성능 비교에 관한 연구)

  • Jung, Dae-Bong;Kim, Hyung-Jun;Kang, Hyung-Mook;Park, Jae-Man;Min, Kyoung-Doug;Seo, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • Military vehicles, compared to conventional vehicles, require higher driving performance, quieter operation, and longer driving distances with minimal fuel supplies. The series hybrid electric vehicle can be driven with no noise and has high initial startup performance, because it uses only a traction motor that has a high startup torque to drive the vehicle. Moreover, the fuel economy can be improved if the vehicle is hybridized. In series hybrid electric vehicles, the electric generation system, which consists of an engine and a generator, supplies electric energy to a battery or traction motor depending on the vehicle driving state and battery state of charge (SOC). The control strategy determines the operation of the generation system. Thus, the fuel economy of the series hybrid electric vehicle relies on the control strategy. In this study, thermostat, power-follower, and combined strategies were compared, and a 37% improvement in the fuel economy was implemented using the combined control strategy suggested in this study.

Position Controller for Clutch Drive System of PHEV(Plug in Hybrid Electric Vehicle) (PHEV(Plug in Hybrid Electric Vehicle)의 클러치 구동 시스템을 위한 BLDC 모터의 위치제어기)

  • Jin, Yong-Sin;Shin, Hee-Keun;Kim, Hag-Wone;Mok, Hyung-Soo;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.166-173
    • /
    • 2012
  • Plug-in Hybrid Electric Vehicle is driven by the engine, the primary traction motor, and the secondary auxiliary motor generating the electric power for battery charging. Secondary auxiliary motor should be connected to the engine or separated from the engine by the clutch system. This paper presents the position controller of the BLDC motor for the clutch system of Plug-in Hybrid Electric Vehicle. The BLDC motor can be applied to the clutch system in spite of it's low accuracy of the position control due to high gear ratio between the clutch and the motor. Since the attachment and the detachment between the motor and the engine should be carried out within 0.3 seconds, the position controller with fast acceleration and deceleration is implemented. For the torque control with braking operation for the BLDC motor, the modified bipolar PWM method with low current ripple compared to the conventional unipolar PWM is presented. The position control performance of the BLDC motor for the clutch system is verified through the simulation and experiments.

A Reliability Allocation for Vehicle System of Light Rail Transit (경량전철 차량시스템의 신뢰도 배분)

  • Jeong, Rak-Gyo;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.357-363
    • /
    • 2002
  • The target reliability values are defined for the train, signaling, rail track and electric power supply system of the LRT under development. The allocation of the reliability value is based on the failure rate and the failure type in the Korean subways. The reliability allocation in the train system is the made ore detail than others. The purpose of the allocation is to verify the reliability value of the results from each of the development stage, which could be the designing, manufacturing and purchasing work. The reliability of braking system, traction system, door system and other control system could be verified by establishing reliability models of these system. It could also enable us to estimate and analyse the reliability value and redo the work if necessary to achieve the shooting reliability value. A guide to the LRT reliability criteria is to be prepared after running test on the test track.

Development of Battery Management System for Electric Vehicle (전기자동차용 전지관리 시스템의 개발)

  • Kim, C.G.;Sung, K.T.;Kim, S.H.;Koo, J.S.;Park, S.S.;Youn, K.Y.;Kim, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1223-1225
    • /
    • 2002
  • This paper has described in Electric Vehicle Battery Management System(EV BMS). EV BMS manages the input/output energy of the traction battery, and provides the optimum environment condition during charging/ driving through the communication with other controllers. In this paper, we introduce our BMS for Santa Fe EV. Hyundai Motor Company has been developed EV since 1990. Recently, Santa Fe EV has been demonstrating with the environmental friendly technology. Two year real road testing program with electric powered Santa Fe is being undertaken by HMC in Hawaii.

  • PDF

Drive-train Jerk Reduction Control for Parallel Hybrid Electric Vehicles (병렬형 하이브리드 전기자동차 구동계의 Jerk 저감 제어)

  • Park, Joon-Young;Sim, Hyun-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • TMED(Transmission Mounted Electric Device) parallel hybrid configuration can realize EV(Electric Vehicle) mode by disengaging the clutch between an engine and a transmission-mounted motor to improve efficiencies of low load driving and regenerative braking. In the EV mode, however, jerk can be induced since there are insufficient damping elements in the drive-train. Though the jerk gives demoralizing influence upon driving comport, adding a physical damper is not applicable due to constraints of the layout. This study suggests the jerk reduction control, composed of active damping method and torque profiling method, to suppress the jerk without hardware modification. The former method creates a virtual damper by generating absorbing torque in the opposite direction of the oscillation. The latter method reduces impulse on the mated gear teeth of the drive-train by limiting the gradient of traction torque when the direction of the torque is reversed. To validate the effectiveness of the suggested strategy, a series of vehicle tests are carried out and it is observed that the amplitude of the oscillation can be reduced by up to 83%.

A Study on Mechanical Measurement of Motor and Transformer for Korean High-Speed Train

  • Han, Young-Jae;Kim, Seog-Won;Seo, Sung-Il;Kim, Young-Guk;Park, Choon-Soo;Lee, Su-Gil;Kim, Jong-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1720-1723
    • /
    • 2003
  • Recently, as the road capacity reaches a limit and environmental problems becomes serious, there exists a gradually increased need for railway vehicles that are environment-friendly, punctual, reliable and safe. Accordingly, in addition to conventional railroad vehicles, lots of vehicles are being newly developed. Korean High Speed Train has been developed for last 6 years to satisfy the need. Authors developed a measurement system for on-line test and evaluation of performances of Korean High-Speed Train. The measurement system is composed of software part and hardware part. Perfect interface between multi-users is possible. A new method to measure temperature was applied to the measurement system. By using the system, measurement and evaluation of the mechanical characteristics of motors and main transformers in Korean High Speed Train was conducted during test running. The measured results for the temperature characteristics of electric devices verify that the measurement system is accurate and reliable.

  • PDF