• 제목/요약/키워드: electric resistance

검색결과 1,444건 처리시간 0.025초

저항클래딩법을 응용하여 형성된 내마모성 WC-6.5Co 클래딩층의 미크로조직 특성 (Characterization of Microstructure of WC-6.5%Co Cladding Layer by Electric Resistance Welding)

  • 이진우;고준빈;이영호
    • Journal of Welding and Joining
    • /
    • 제25권3호
    • /
    • pp.72-77
    • /
    • 2007
  • This study deals with characterizations of microstructure and wear performance of a cladding layer, product on 1.9 mm-thick mild steel plate by the electric resistance welding, of composite metal powder of Coarse WC-6.5%Co and high carbon alloy (SHA). The cladding layer was examined and tested for microstructural features, chemical composition, hardness, and bondability. The cladding layer have two different matrix were observed by an optical microscope and EPMA. The one was the coarse WC-6.5Co structure. The other was the melted SHA with surrounding the WC-6.5Co structure. The hardness of WC-6.5Co was 1210HV. The hardness of SHA was 640HV.

Development of Heat- and Creep-resistant Fine-grained Rapidly Solidified P/M Aluminum Alloy

  • Kaji, Toshihiko;Tokuoka, Terukazu;Nishioka, Takao
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.720-721
    • /
    • 2006
  • The new alloy$^{1)}$ is made from rapidly solidified Al-Ni-Zr-Ce aluminum alloy powder, and has the following unique mechanical characteristics:(1) The stress-strain curve shows a yield point; (2) The alloy shows high heat resistance; (3) Although the alloy is submicron particle diameter, it shows excellent creep resistance. We observed the micro structures of this new alloy, and it is thought that is based on the following reasons:(1) The dislocation strongly adheres to the alloy's many crystal boundaries;(2) The added alloying elements have a small diffusion coefficient in aluminum;(3) The tiny intermetallic compound particles crystallizing at the grain boundary.

  • PDF

Sliding Wear and Corrosion Resistance of Copper-based Overhead Catenary for Traction Systems

  • Kwok, C.T.;Wong, P.K.;Man, H.C.;Cheng, F.T.
    • International Journal of Railway
    • /
    • 제3권1호
    • /
    • pp.19-27
    • /
    • 2010
  • In the present study, the electrical sliding wear and corrosion resistance of pure copper (Cu) and six age-hardened copper alloys (CuCr, CuZr, CuCrZr, CuNiSiCr, CuBe and CuBeNi) were investigated by a pin-on-disc tribometer and electrochemical measurement. Various copper-based alloys in the form of cylindrical pin were forced to slide against a counterface stainless steel disc in air under unlubricated condition at a sliding velocity of 31 km/h under normal load up to 20 N with and without electric current. The worn surface of and wear debris from the specimens were studied by scanning electron microscopy. Both mechanical wear and electrical arc erosion were the wear mechanisms for the alloys worn at 50 A. Owing to its good electrical conductivity, high wear and corrosion resistance, CuCrZr is a promising candidate as the overhead catenary material for electric traction systems.

  • PDF

고효율, 저가화 실리콘태양전지를 위한 Ni/Cu/Ag 금속전극의 특성 연구 (Investigation of the Ni/Cu metallization for high-efficiency, low cost crystlline silicon solar cells)

  • 이지훈;조경연;이수홍
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.235-240
    • /
    • 2009
  • Crystlline silicon solar cells markets are increasing at rapid pace. now, crystlline silicon solar cells markets screen-printing solar cell is occupying. screen-printing solar cells manufacturing process are very quick, there is a strong point which is a low cost. but silicon and metal contact, uses Ag & Al pates. because of, high contact resistance, high series resistance and sintering inside process the electric conductivity decreases with 1/3. and In pastes ingredients uses Ag where $80{\sim}90%$ is metal of high cost. because of low cost solar cells descriptions is difficult. therefore BCSC(Buried Contact Solar Cell) is developed. and uses light-induced plating, ln-line galvanization developed equipments. Ni/Cu matel contact solar cells researches. in Germany Fraunhofer ISE. In order to manufacture high-efficiency solar cells, metal selections are important. metal materials get in metal resistance does small, to be electric conductivity does highly. efficiency must raise an increase with rise of the curve factor where the contact resistance of the silicon substrate and is caused by few with decrement of series resistance. Ni metal materials the price is cheap, Ti comes similar resistance. Cu and Ag has the electric conductivity which is similar. and Cu price is cheap. In this paper, Ni/Cu/Ag metal contact cell with screen printing manufactured, silicon metal contact comparison and analysis.

  • PDF

전지의 연결방법에 따른 전류의 특성에 대한 초등교사들의 이해도 (The Elementary School Teachers' Understandings about the Characteristics of Currents according to the Connection Methods of Batteries in Simple Electric Circuits)

  • 현동걸;신애경
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제33권2호
    • /
    • pp.335-351
    • /
    • 2014
  • The 96 elementary school teachers' the degrees of understandings about the characteristics of the currents according to the connection methods of batteries in simple electric circuits were investigated. In this study, the concepts on the characteristics of currents according to the connection methods of batteries were divided 'the learned concepts' and 'the differentiated concepts'. The characteristics of the currents in the region of the larger resistance of load than the internal resistance of a battery were called the learned concepts, they are taught in the science curriculum. While the characteristics of the currents in the region of the smaller resistance of load than the internal resistance of a battery were called the differentiated concepts, they are not exposed clearly in the science curriculum. The results obtained in this study are as follows: The average score related to the learned concepts was relatively high, while the degree of the teachers' cognitions of the internal resistance of a battery and the resistance of wires were low. Also the average score related to the differentiated concepts was very low because it seems so new to the elementary school teachers. It strongly suggests that the elementary school teachers did not understand meaningfully the characteristics of the currents related to the connections of batteries on the ground of the cognitions of the internal resistances of batteries and the resistances of loads in simple electric circuits. Hence, they might experience difficulties due to the problems occurred in relation to the connections of batteries in the elementary school science lessons.

저전압에서의 통전전류를 이용한 인체의 동저항 측정 및 예측 (Measurement and Estimation of Dynamic Resistance of the Human Body Using Body Current at Low-Voltage Levels)

  • 김두현;강동규;김상철
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.37-42
    • /
    • 2001
  • The severity of electric shock is entirely dependent on body resistance. When the human body becomes a part of electric circuit, the body resistance is given as a function of shock scenario. Factors which consist of applied voltage, shock duration, body current path and contact area, etc.. The body resistance is defined as the voltage applied to subjects divided by the body current. To secure safety of the subjects, the experiment is conducted on 10 subjects, the body current is limited to 4mA. And only three factors under many shock scenario conditions are used to determine the body resistance. The three factors are the applied voltage, the current pathway and the contact area. The object of this work is to estimate the dynamic resistance of the human body as a function of applied voltage using the body current at low-voltage levels. The data of the body current at low-voltage levels are extrapolated to high-voltage levels using two analytic functions with specified constants calculated by numerical method. Also we can provide permissible body voltage for various copper electrodes on the basis of the data determined with the dynamic resistance and the body current.

  • PDF

신발의 전기저항 측정에 관한 연구 (A Study on the Measurement of Electric Resistance of Footwear)

  • 최상원;이석원
    • 한국안전학회지
    • /
    • 제28권3호
    • /
    • pp.56-62
    • /
    • 2013
  • The occurrence of the ventricular fibrillation is directly dependent on the magnitude and duration of the current. The current which flows through the human body is proportional to the touch voltage applied across the body and is in inverse proportion to the impedances in the circuit. The circuit impedances consist of human body impedance, line impedance, equipment impedance, earth terminal impedance and impedance of shoes which a person put on. The impedance of shoes greatly affect the severity of the electric accidents. The human body impedances relevant to the contact areas, contact conditions, current paths and touch voltages are already determined in the IEC 60479-1. However, the impedance of shoes is ignored or substituted by a simple value because of the absence of the sufficient data. For example, the impedance of shoes plus ground contact resistance is postulated to be $1,000{\Omega}$ in the IEC 61200-612. In IEEE 80, the shoe resistance plus ground contact resistance is assumed to be bare foot with ${\rho}/4b{\Omega}$. In this paper, we measured and analyzed the impedance of shoes with respect to conditions such as applied weight, environment variables and voltages. The results showed that the impedance of shoes is dependent on environment variables regardless of the types of shoes. Most of shoes showed the correlation with the applied force, whereas a few shoes showed characteristics related to the applied voltage. In terms of severity of electric shock, one thirds of test samples indicated to be dangerous in saltwater conditions.

아레니우스 방정식의 가속인자를 만족하는 절연저항특성 분석에 의한 케이블 수명평가 연구 (A Study on Cable Lifetime Evaluation Based on Characteristic Analysis of Insulation Resistance by Acceleration Factor of the Arrhenius Equation)

  • 엄기홍;이관우
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.231-236
    • /
    • 2014
  • 오늘 날 산업이 발전함에 따라 전력에 대한 수요량이 증가하고 송전 용량이 커야할 필요성이 점차 요구되고 있다. 관련 설비들은 대규모화될 뿐만이 아니라 높은 신뢰성으로써 동작할 것을 요구받고 있다. 따라서 전기설비의 안정화는 매우 중요한 과제이다. 특히, 전기의 생산 및 공급 과정에서 요구되는 높은 신뢰성은 산업 사회의 필수적인 요소라고 할 수 있다. 설비의 사고 및 정전 사고등은 높은 전기적 의존을 가진 고도 산업사회에 막대한 경제적 손실 및 장애를 가져다준다. 우리는 이 논문에서 발전소에서 고전압의 생산 및 송배전의 유일한 전송 수단으로 사용하고 있는 고전압용 전력 케이블(power cable) 시스템의 안정된 동작을 판단하기 위하여, 아레니우스 인자를 따르는 절연 저항의 시간에 따른 변화추세를 파악하고, 열화의 마지막 단계로서 발생하는 파괴에 의한 케이블의 수명을 예측하고자 한다.

CNT 분산 방법에 따른 접착조인트의 저항 및 분산성 평가 (Evaluation of Dispersivity and Resistance of the Adhesive Joint According to Dispersion Methods of CNT)

  • 이봉남;김철환;권진회;최진호
    • Composites Research
    • /
    • 제28권6호
    • /
    • pp.348-355
    • /
    • 2015
  • 접착 조인트는 환경조건 및 작업자의 숙련도에 따라 접착강도가 크게 변화될 수 있으므로 이에 대한 비파괴 검사법은 매우 중요하다. 최근 접착제에 1-2 wt%의 CNT를 첨가하고 저항변화를 측정하여 접착 체결부의 내부 결함을 검출하는 전기저항법이 제시되었다. 전기저항법에서는 동일조건에서 접착조인트의 저항값이 일정하도록 하기 위하여 CNT의 균일한 분산이 매우 중요하며 이에 따라 결함 검출의 정확도가 좌우된다. 본 연구에서는 4가지 분산 방법으로 CNT를 접착제에 분산시켜 접착조인트을 제작하고 전기적 물리량을 측정하였다. 초음파를 이용한 CNT의 전처리 및 기화과정, 물리적 교반 방법등을 선정하여 효율적인 분산방법을 정립하고 분산성을 평가할 수 있는 척도를 제시하였으며 일반적인 분산 방법 대비 선정된 분산 방법을 적용했을 때 전기저항법의 결함검출능을 비교하였다.

축소모델을 이용한 22.9kV-Y 배전선로의 유도뢰 분석 (Analysis on Induced Lightning of a 22.9kV-Y Distribution Line Using a Reduced Model)

  • 김점식;김도영;박용범;권신원;길경석
    • 전기학회논문지P
    • /
    • 제59권4호
    • /
    • pp.434-439
    • /
    • 2010
  • This study fabricated a simulation facility which reduced the structure of a current distribution line to 50:1 in order to analyze the induced lightning shielding effect of a 22.9kV-Y distribution line according to ground resistance capacity, grounding locations, etc. When installing an overhead ground wire, the standard for grounding a distribution line with a current of 22.9kV-Y requires that ground resistance in common use with the neutral line be maintained less than $50\Omega$every 200m span. The reduced line for simulation had 7 electric poles and induced lightning was applied to the ground plane 2m apart from the line in a direction perpendicular to it using an impulse generator. If induced voltage occurred in the line and induced current flowed through the line due to the applied current, the induced voltage and current of the 'A' phase were measured respectively using an oscilloscope. When all 7 electric poles were grounded with a ground resistance of less than $50\Omega$ respectively, the combined resistance of the line was $7.4\Omega$. When an average current of 230A was applied, the average induced voltage and current measured were 1,052V and 13.8A, respectively. Under the same conditions, when the number of grounding locations was reduced, the combined resistance as well as induced voltage and current showed a tendency to increase. When all 7 electric poles were grounded with a ground resistance of less than $100\Omega$, the combined resistance of the line was $14.9\Omega$. When an average current of 236A was applied, the average induced voltage and current of the 'A' phase calculated were 1,068V and 15.6A, respectively. That is, in this case, only the combined resistance was greater than when all 7 electrical poles were grounded, and the induced voltage and current were reduced. Therefore, it is thought that even though ground resistance is slightly higher under a construction environment with the same conditions, it is advantageous to ground all electric poles to ensure system safety.