• Title/Summary/Keyword: electric regeneration

Search Result 110, Processing Time 0.024 seconds

Development of Regeneration Inverter using 3-Level Inverter (3레벨 인버터를 이용한 직류전력 회생인버터 개발)

  • 김상균;박채운;최종묵
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1007-1012
    • /
    • 2002
  • In this paper, a regeneration inverter is proposed using 3-level inverter. Electric regeneration means regeneration brake in electric railway vehicles. Induction motors, generally used with railway vehicles, convert the electric energy to the movement energy when vehicle is running. When the vehicle stop, the induction motor convert the movement energy to the electric energy. Usually, this energy is used with another running vehicle in the same section. If there is no vehicle around when the regeneration is occurred, regeneration energy is consumed by heat energy with resistors. The proposed inverter is capable of reuse this regeneration energy in another place.

  • PDF

A Study on Characteristics of Electric Heater Regeneration Filter Trap in Diesel Engine (디젤기관에서 전기 히터 재생 여과 트랩의 특성에 관한 연구)

  • 류규현;박만재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.10-15
    • /
    • 2001
  • Urgent increasing of the vehicles influence air pollution and the damage of the plants and animals. Particularly, exhaust-ing particulate of diesel vehicles give serious effect to human life. Therefore, this study aim to reduce amount of particulate and to contribute developing after-treatment in diesel engine. Through the experimental and theoretical study about charac-teristics of the electric heat regeneration, various results are obtained.

  • PDF

Development of the ultra-high speed electric injection molding machine using the energy regeneration method (에너지 회생 기법을 사용한 초고속 전동 사출성형기 개발)

  • Yu, Hyeon-Jae;Yoo, Sung-Chul;Hyun, Chang-Hoon;Park, Kyoung-Ho
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.1-5
    • /
    • 2016
  • High-speed and high-torque performance is required in the ultra-high speed electric injection molding machine field. To implement this performance, the big-size inverter is needed and the corresponding converter should be used. In this case, the whole cost for configuring the system will be increased. In this paper, we introduce a method which is able to reduce the energy and the cost for configuring the system using the energy regeneration. The energy regeneration method is based on reusing the regeneration power generated at the electric motor during decelerating the injection motion. In this paper, we demonstrate the effectiveness of the method by using the ultra-high speed injection motion.

A Study of Increasing Regeneration Energy and Braking Using Super Capacitor(EDLC) (슈퍼커패시터를 이용한 회생에너지 증대 및 제동에 관한 연구)

  • Kwon, Oh-Jung;Park, Chang-Kwon;Oh, Byeong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.24-33
    • /
    • 2006
  • This experiment explains about electrical braking equipment which will be used for 1.2kW PEMFC HEV. The equipment is made of BLDC motor and super capacitor(EDLC). The circuit is designed for regeneration braking that can save the energy from low voltage of generation with BLDC motor. Increasing a regeneration energy from braking system is effected with regeneration current and SoC of super capacitor(EDLC). Electrical braking in electrical vehicle is suitable for regeneration braking with dynamic braking together.

Direction for Development of Energy Regeneration Device for DC Electric Railway System (DC전철구간의 에너지회생장치 개발 방향)

  • Kim, Yong-Ki;Bae, Chang-Han;Han, Moon-Seob;Yang, Young-Chul;Jang, Su-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.804-808
    • /
    • 2007
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, Dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The proposed regeneration inverter system for DC traction can be used as both an inverter and an active power filter(APF). As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. In addition, electric traction system products harmonic current and voltage distortion and reactive power because power converter is used so regeneration inverter normally runs such as active power filter(APF) for improving power quality. From the viewpoint of both power capacity and switching losses, the system is designed on the basis of three phase PWM inverters and composed of parallel inverters, output transformers, and an LCL filter.

  • PDF

Improving the capability of energy regeneration inverter for dc electric traction system (직류전철용 에너지 회생장치 성능개선)

  • Bang, Hyo-Jin;Kim, Yong-Ki;Jang, Su-Jin;Song, Sang-Hun;Ahn, Kyu-Bok;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.104-109
    • /
    • 2004
  • Recently, when electric traction system used DC 1500[Vdc] runs on decline of rail road track and slows down, dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. Therefore this paper proposes that the extra power is regenerated through regeneration inverter to AC utility in result this system obstruct to go beyond regular voltage and improve the efficiency. In addition, electric traction system products harmonic current and voltage distortion and reactive power because power converter is used so regeneration inverter normally runs such as active power filter(APF) for improving power quality.

  • PDF

A Study on the PM Oxidation Characteristics of Electrical Heater DPF System (전기히터방식 매연여과장치의 PM 산화 특성에 관한 연구)

  • Ham, Yun-Young;Kim, Dae-Ha;Kim, Kyung-Woon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.183-190
    • /
    • 2006
  • For continuously regenerative PM collecting system which adopted thermally stable SiC DPF and electrical heater which was placed upstream of the filter and driven by well constructed control logic, PM oxidation characteristics were investigated varying air flow rate, amounts of PM accumulated on the DPF and filter inlet temperature in order to get optimized PM regeneration performance. This study showed that the operating condition of air flow rate 70 lpm, high PM loading around 30g and filter inlet temperature $700^{\circ}C$ with heat insulation was effective in achieving high regeneration efficiency. Also, in this condition, we could decrease the electric energy consumption by reducing the regeneration time.

Substituent Effect in the Reaction of Carbon Dioxide with Amine-Based Absorbent (치환기 특성에 따른 아민흡수제와 CO2의 반응특성 평가)

  • Shim, Jae-Goo;Lee, Junghyun;Jung, Jin-Kyu;Kwak, No-Sang
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.297-303
    • /
    • 2020
  • The reaction of carbon dioxide with the amine-based absorbents which have various substituents in the molecule was described. In the case of MEA which is a representative primary amine, the absorption reaction was proceeded very fast while the regeneration reaction was took place slowly due to the strong bond strength between the absorbent and carbon dioxide. The more substituents on N atom of the absorbent, the slower the absorption reaction between carbon dioxide and the absorbent, which in turn causes faster the regeneration rate from the reaction intermediate, carbamate.

Adsorption/desorption of CO2 on Activated Carbon Fibers Using Electric Swing Adsorption (활성탄소섬유상에서 전기변동법을 이용한 CO2의 흡/탈착)

  • Shim, JaeWoon;Moon, SeungHyun
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.432-437
    • /
    • 2005
  • An electric swing adsorption (ESA) process for recovering highly pure $CO_2$ from the mixed gases was tested. In this study, activated carbon fibers were used as an adsorbent. The activated carbon fibers showed fast adsorption rate and the high adsorption capacity for $CO_2$ adsorption under the condition of the ambient pressure. Activated carbon fiber with higher specific surface area was suitable to repeated adsorption-desorption cycle process, showing consistent breakthrough curve. Especially, the regeneration method by vacuum combined with ESA improved the performance of desorption process by an additional 17% regeneration efficiency compared to a vacuum only method, and showed the high regeneration efficiency at comparatively low 7-8 Wh energy.

A study of the effects of electric current on the mineralzation of the cultured calvaria bone cells (전기적 자극이 배양 두개관 골세포의 석회화에 미치는 영향에 관한 연구)

  • Park, Joon-Bong;Hur, In-Sik;Lee, Hye-Ja;Choi, Young-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.949-961
    • /
    • 1997
  • To date, various clinical procedures have been used to restore periodontal apparatus destroyed by periodontal disease. And then, many experimental approaches have been proceeded to develop treatment methods to promote periodontal regeneration. Mechanical, chemical treatments to enhance the attachment of periodontal tissue cells as changing the physical properties of root surfaces, bone graft procedure, and treatments for guided tissue regeneration have been used for periodontal regeneration. However, recent studies have revealed that biologic factors such as growth factors promote biologic mechanism associated with periodontal regeneration. This study was done to enucleate how ELF stimulus affect the periodontal regeneration. We can have following conclusions from this experimental results. The influence of low frequency(ELF) electric stimulus (30Hz at $lO{\mu}A$) known to promote bone formation in vivo, was evaluated for its ability to affect bone cell function in vitro. After 12 hour exposure of ELF stimulus at most appropriate densities ($5{\times}10^4\;cells/cm^2$) to increase osteoblastic cells normally, rat calvarial cells were incubated for 60 hours were used in this study. We have found ELF stimulus suppress calvarial cell proliferation and the ability of protein synthesis, enhance the alkaline phosphatase activity significantly.

  • PDF