• Title/Summary/Keyword: electric molten marks

Search Result 6, Processing Time 0.019 seconds

Control of free surface shape in the electromagnetic casting process (전자기 주조공정에서의 자유표면 형상 제어)

  • 박재일;강인석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.612-615
    • /
    • 1996
  • In the continuous casting process, molten metal contacts the mold wall and the molten metal surface is subject to the mold oscillation. The mold oscillation results in the oscillation marks on the surface of solidified steel, which has undesirable effects on the quality of slabs. In order to reduce the oscillation marks by achieving soft contact of molten metal with the mold surface, alternating magnetic field is applied to the surface of molten metal. However, if the magnetic field strength becomes too strong, the melt flow induced by the magnetic field. causes the instability of the molten metal surface, which has also the bad influence on the slab quality. Therefore, it is very important to choose the optimal position of the inductor coil and the optimal level of electric power to minimize the surface defects. In the present work, as a first step toward the optimization problem of the process, numerical studies are performed to investigate the effects of coil position and the electric power level on the meniscus shape and the flow field. As numerical tools, the boundary integral equation method(BIEM) is used for the magnetic field analysis and the finite difference method (FDM) with orthogonal grid generation is used for the flow analysis.

  • PDF

Electrical Fire Identification due to Conductor Structure Analysis of Electrical Wires (전선의 도체조직 분석에 의한 전기화재 감식)

  • Park, O-Cheol;Kim, Wang-Kon;Park, Nam-Kyu;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.615-618
    • /
    • 2003
  • To investigate the electrical fire identification due to conductor structure analysis of an electrical wire, we are studied by temperature heating test, over current test, short test and electric molten marks. And metal structure analysis of wire by short, we are found out increase in crystal grain with heating temperature. Structure of specimen at over current 300[%] occurred hardly structure formation and boundary of grain.

  • PDF

The Fire Dispersive Patterns of the Power Cord Sets for Low Voltage Appliances in Wall-modeling (벽면 모델링을 이용한 저압용 일체형 코드의 화재확산 패턴)

  • Shong, Kil-Mok;Kim, Hyang-Kon;Kim, Dong-Ook;Kim, Dong-Woo;Kim, Young-Seok;Choi, Chung-Seog
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.330-334
    • /
    • 2004
  • In this paper, we studied on the fire dispersive patterns and the fire progress at the power cord sets for low voltage appliances in the wall-model. For the experiment, we manufactured a wall-model and applied the external flame at the power cord sets. From the results, short-circuit of the power cord sets was haunted by the external flame it was disconnected with the flashing and the scattering. The fire progress on the polyvinyl chloride insulated flexibel cords is not observed because the ignition energy decreases. In case of rubber insulated flexible cords, however, the fire was progressed continuously. Molten marks were formed at a two electric wire by continuous electric discharge in power source part. A large molten mark was formed in load part. And the columnar structure and voids were observed in molten wire.

  • PDF

A Study on the Electrical Fire Risk Assessment Methods of LED Lightings for Outdoor (옥외용 LED 조명의 전기화재 위험성 평가기법에 관한 연구)

  • Kim, Hyang-Kon;Kim, Dong-Ook;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.674-679
    • /
    • 2011
  • In this paper, we experimented and analyzed about electric fire risk assessment methods of LED lightings for outdoor. LED lighting is composed of AC power lines, AC/DC converter, DC power lines and LED lamps. There are some risk factors of electric fire in LED lighting such as short circuit between power lines or power line and ground, dielectric breakdown, leakage current, abnormal voltage inflow, poor contacts(connections), etc. As a result of this study, insulation coverings of wire was ignited due to dielectric breakdown between power lines and molten marks were formed in copper conductor. LED lighting was blown out while short circuit, beside that, electrical disorder did not occur. When abnormal voltage was inflowed, electronic components such as varistor, condenser were damaged. Partial heating was produced and insulation was melted and carbonized by arc and heating while poor contacts were happened. We expect that the results of this study would be helpful for electrical safety of LED lightings for outdoor.

Study on the Fire Investigation by Damaged Pattern Analysis of Incandescent Lamps (백열전구의 소손 패턴 분석을 통한 화재조사 연구)

  • Kim, Hyang-Kon;Kim, Dong-Woo;Moon, Hyun-Wook;Choi, Chung-Seog;Choi, Hyo-Sang
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.22-28
    • /
    • 2008
  • In this paper, we conducted experiments on damaged patterns of incandescent lamps by external stress, such as external flame or external impact. Glass bulbs were melted and filaments were evaporated by external flame when the bulbs were lit, and finally molten marks were recognized at the filaments. Also, there were some differences in absorption patterns of evaporated filament elements according to set-up directions, and evaporated filament elements were absorbed in lead-in wires, support, inside of glass. In case the bulbs were lit and they were damaged by external impacts, filament burned out. Filaments were not evaporated but melted. We expect that this results could be used to judge whether electric current flew through incandescent lamps or not in fire site.