• Title/Summary/Keyword: electric impedance

Search Result 583, Processing Time 0.028 seconds

An Antenna with Combination of Electric-Magnetic Radiators for NotePC Platform (전기-자기계 방사체 결합형 노트 PC용 안테나)

  • Kim, Yong-Jin;Kim, Jin-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.24-28
    • /
    • 2010
  • This paper is presented on the antenna design for notepc platform. We present the antenna with combination of electric-magnetic radiator for dual-band Wireless Local Area Network (WLAN) service and a High Speed Downlink Packet Access (HSDPA) service. Due to the limited antenna space in notepc platform, the antennas for various wireless communication service should be located at a very small area. In this paper, the magnetic-type radiator works for high frequency band (1.7 - 2.1 GHz) application and the electric-type radiator works for low frequency band (820 - 960 MHz) application. This combination produces wide-band characteristics in the high frequency band. Simulation and experimental results of input impedance and gain characteristics of the proposed antenna are presented. There are good agreements between the simulated and measured S11 and gain values.

Analysis for Autotransformer-Fed AC Electric Railroad System Using Constant Current Mode (정전류 철도 부하를 이용한 교류 전기 철도 급전 시스템 해석)

  • 이승혁;정현수;김진오
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.329-334
    • /
    • 2001
  • This paper presents exact autotransformer-fed AC electric railroad system modeling using constant current mode. The theory is based on the solution of algebraic. The proposed modeling is considered the line self-impedances and mutual-impedances. Besides, the load modeling improved results are obtained as application to the proposed constant current mode. In the analysis on AT-fed AC electric railroad system circuit, a generalized analysis method using the loop equation on a case by case. the simulation objectives are to calculate the catenary and rail voltages with respect to ground, as the train moves along a section of line between two adjacent ATs. The model contains assumptions regarding the representation of the autotransformer, the impedance of the track/catenary system, and the grounding arrangements, which all effect the accuracy of the result. The modeling results seem very reasonable. It is established that techniques for the AC electric railroad system modeling and analysis.

  • PDF

A Simulation of Lightning Faults Reducing Effects on the 154 kV Transmission Tower by Auxiliary Grounding (보조접지선 시공에 의한 송전선로의 내뢰성 향상효과 모의)

  • Kwak, Joo-Sik;Shim, Jeong-Woon;Shim, Eung-Bo;Choi, Jong-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1843-1846
    • /
    • 1997
  • This paper describes the fault reducing effects of the 154 kV transmission tower by auxiliary grounding from the top of the tower to ground. The grounding surge impedance of the auxiliary grounding system is calculated by CDEGS(:Current Distribution Electromagnetic Interference Grounding and Soil Structure Analysis), and the critical lightning back flashover current and arcing horn dynamic characteristics are simulated by EMTP/TACS(:Electromagnetic Transient Program/Transient Analysis of Control Systems). The calculated results of total LFOR(Lightning Flashover Rate) shows that the LFOR can be reduced from 5.2(count/100km. year) to 3.4 by auxiliary grounding on the 154 kV transmission tower with one ground wire shielding system.

  • PDF

Capacitive Coupling LLC Wireless Power Transfer Converter Through Glasses of Electric Vehicles (전기자동차의 유리를 통한 커패시티브 커플링 LLC 무선 전력 전송 컨버터)

  • You, Young-Soo;Yi, Kang-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.542-545
    • /
    • 2016
  • This work proposes a capacitive coupling-based wireless battery charging circuit that is built with vehicle glasses for electric vehicles. A capacitive coupling wireless power transfer offers many advantages, such as low metal impact and low energy transfer efficiency changes in accordance with changes in position. However, a large coupling capacitor is needed for high power transfer. Therefore, a new capacitive coupling-based wireless power transfer LLC resonant converter built with the glasses of an electric vehicle is proposed. The proposed converter is composed of coupling capacitors with glasses of an electric vehicle and two transformers for impedance transformation. The proposed LLC converter can transfer large power and obtain high efficiency with zero voltage switching. The validity and features of the proposed circuit is verified by experimental results with a 1.2 kW prototype.

Performance Analysis and Degradation Characteristics of NCM LIB for ESS (ESS용 NCM계 LIB의 설계인자별 성능분석 및 열화특성 연구)

  • Kwon, S.J;Park, E.Y;Lim, J.H;Choi, J.H;Kim, J.H
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.219-221
    • /
    • 2018
  • ESS용 NCM계 $LIB(Li[Ni_xCo_yMn_z]O_2)$의 양극 전이금속 설계인자 조성비(x:y:z)를 5:2:3, 6:2:2로 달리하여 제작한 전지를 사용하여 C-rate별 방전시험을 통한 기본성능평가를 진행하였고, 가속열화 시험을 통한 수명특성을 분석하였다. EIS(Electrochemical Impedance Spectroscopy) 실험을 통하여 전지의 임피던스를 확인하였고, 열화되지 않은(Fresh) 전지와 열화된(Aging) 전지의 SOC(State-of-Charge)별 임피던스 특성을 비교 분석하였다.

  • PDF

Ground Impedance Characteristics for Grounding System on Power Substation (정상시 접지계통의 접지 임피던스 특성)

  • Kim, Jae-Yee;Ko, Young-Hyuk;Ko, Young-Gwon;Kim, Jeong-Bu;Jeong, Kil-Jo;Ki, Hyun-Chan;Choi, Jong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2207-2209
    • /
    • 2000
  • 본 논문에서는 접지 모델을 활용하여 접지계의 임펄스 임피던스를 계산하고, 선로 임피던스에 연결된 접지 임피던스의 반사계수를 계산하여 대지로 유입되는 분류율을 평가하였다. 따라서 접지 저항을 낮추는 경우 평상시 전위 상승효과를 줄일 수는 있지만 위험전압의 인가시에는 인축의 안전과 기기의 절연 측면에서 악조건의 상황이 될 수 있다. 또한 접지 모델에서 용량의 변화와 접지 저항의 변화에 따른 반사계수의 변화를 확인하였고, 상용 주파수 근처에서는 저항 성분만 존재하고 리액턴스 효과는 없음을 확인하였다.

  • PDF

An Electric Arc Furnaces Load Model for Transient Analysis (과도현상 해석을 위한 EAFs 부하 무델의 개발)

  • Jang, Gilsoo;Venkata, S.S.;Kwon, Sea-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.197-202
    • /
    • 1999
  • Electric arc furnaces (EAFs) use bulk electrical energy to create heat in metal refining industries. The electric arc process is a main cause of the degradation of the electric power quality such as voltage flicker due to the interaction of the high demand currents of the load with the supply system impedance. The stochastic models have described the aperiodic physical phenomena of EAFs. An alternative approach is to include deterministic chaos in the characterization of the arc currents. In this parer, a chaotic approach to such modeling is described and justified. At the same time, a DLL(Dynamic Link Library) module, which is a FORTRAN interface with TACS (Transient Analysis of Control Systems), is developed to implement the chaotic load model in the Electromagnetic Transients Program (EMTP). The details of the module and the results of tests performed on the module to verify the model and to illustrate its capabilities are presented in this paper.

  • PDF

A method for uniform current distribution of HTS cable using Inter-Phase Transformers (Inter-Phase Transformers를 이용한 고온초전도 케이블의 층간 전류 등분배 방안)

  • Choi, Yong-Sun;Yim, Seong-Woo;Sim, Jung-Wook;Hwang, Si-Dole;Park, In-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.973-975
    • /
    • 2003
  • Uniform current distribution among conductor layers in HTS cables using IPTS (inter-phase transformers) was proposed. Conventional methods for current distribution, in which resistors are inserted to conductor layers, causes additional loss. In contrast, IPTS, which use magnetic coupling, make it possible that the current in parallel circuits is distributed uniformly with any load, and minimize the loss. In this study, IPTS were designed and fabricated for examination of uniform current distribution in the conductor layers of HTS cables. The ITP was designed through calculation of its impedance that can cancel the inductance of the conduction layers.

  • PDF

Charged Cable Model (CCM) ESD Damage to ECU (Charged Cable Model (CCM) 정전기 방전(ESD)에 의한 전자제어장치의 손상)

  • Ha, MyongSoo;Jung, JaeMin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.159-165
    • /
    • 2013
  • ESD damage by Charged Cable Model (CCM) is introduced. Due to its own impedance characteristic unlike Human Body Model (HBM) or Machine Model (MM) electric component can be destroyed even though it is located after typical protection circuit. Possible mechanism of ESD damage to automotive electric control unit (ECU) in vehicle environment by CCM discharge was investigated. Based on investigation, field-returned vehicle whose ECU is expected to be damaged by CCM discharge was tested to reproduce it and similar electric component destruction inside ECU was observed. Suggestions to reduce the possibility of ESD damage by CCM are introduced.

The Effect of the Anode Thickness on Electrolyte Supported SOFCs

  • So Yeon Shin;Dae-Kwang Lim;Taehee Lee;Sang-Yun Jeon
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.145-151
    • /
    • 2023
  • Planer-type electrolyte substrates are often utilized for stack manufacturing of electrolyte-supported solid oxide fuel cells (ES-SOFCs) to fulfill necessary requirements such as a high mechanical strength and redox stability. This work did an electrochemical analysis of ES-SOFC with different NiO-YSZ anode thicknesses to find the optimal value for the high performance of the fuel cell. The cell resistivities were constant at anode thickness between 25-58 ㎛, but a thick anode (74 ㎛) caused a high electrode resistivity leading to a dramatic reduction in cell performance. A stability test was performed for 50 hours at 700℃, and the results showed a degradation rate of 0.3% per 1000 h by extrapolated fitting.