• Title/Summary/Keyword: electric deposition

Search Result 424, Processing Time 0.029 seconds

Improvement of Electrical Properties of Diamond MIS (Metal-Insulator- Semiconductor) Interface by Gate Insulator and Application to Metal-Insulator- Semiconductor Field Effect Transistors (게이트 절연막에 의한 다이아몬드 MIS (Metal-Insulator-Semiconductor) 계면의 전기적 특성 개선과 전계효과 트랜지스터에의 응용)

  • Yun, Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.6
    • /
    • pp.648-654
    • /
    • 2003
  • Diamond MIS(Metal-Insulator-Semiconductor) diodes and MISFETs(Metal-Insulator-Semiconductor Field Effect Transistors) were fabricated by employing various fluorides as gate insulator, and their electrical properties were closely investigated by means of C-V measurements. The A1/BaF$_2$/diamond MIS structure exhibited outstanding electrical properties. The MIS diode showed a very low surface state density of ∼10$\^$10//$\textrm{cm}^2$ eV near the valence band edge, and the observed effective mobility(${\mu}$$\_$eff/) of the MISFET was 400 $\textrm{cm}^2$/Vs, which is the highest value obtained until now in the diamond FET. From the chemiphysical point of view, the above result might be explained by the reduction of adsorbed-oxygen on the diamond surface via strong chemical reaction by the constituent Ba atom in the insulator during the film deposition(Oxygen-Gettering Effect).

Modeling of Carbon Plume in PLAD Method Assisted by Ar Plasmas (Ar 플라즈마 상태에서 PLAD법에 의한 탄소 입자의 운동 모델링)

  • So, Soon-Youl;Lim, Jang-Seob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.24-31
    • /
    • 2005
  • A plused laser ablation deposition(PLAD) technique has been used for producing fine particle as well as thin film at relatively low substrate temperatures. However, in order to manufacture and evaluate such materials in detail, motions of plume particles generated by laser ablation have to be understood and interactions between the particles by ablation and gas plasma have to be clarified. Therefore this paper was focused on the understanding of plume motion in laser ablation assisted by hi plasmas at 100[mTorr]. One-dimensional hybrid model consisting of fluid and particle models was developed and three kinds of plume particles which are carbon atom(C), $ion(C^+)$ and electron were considered in the calculation of particle method. It was obtained that ablated $C^+$ was electrically captured in Ar plasmas by strong electric field(E). The difference between motions of the ablated electrons and $C^+$ made E strong and the collisional processes active. The energies of plume particles were investigated on a substrate surface. In addition the plume motion in Ar gas was also calculated and discussed.

Effect of Cathode in Electrochemical Reaction for Treating Ballast Water (선박평형수 처리를 위한 전기화학 반응에서 음극의 영향)

  • Kim, Dong Seog;Park, Hye Jin;Yoon, Jong Mun;Park, Yong Seok;Park, Young Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1175-1182
    • /
    • 2014
  • In this study, we examined the effect of cathode from electrolysis reactor for treating ballast water. We are going to select a suitable cathode for seawater electrolysis after considering the effect on the generation of the oxidant of cathode and the electrode deposition materials adhering to the surface of cathode. Anode is Ru-Ti-Pd electrode and cathode are Ti, Pt, JP520 (Ni-Pt-Ce) electrodes. Using the cathode of the three types, experiments were conducted to examine the effects of TRO (total residual oxidants) generation concentration and RNO (N, N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical) degradation concentration (in 1, 35 psu), ohmic drop, FESEM(field emission scanning electron microscope) observation of cathode surface and EDX (energy dispersive X-ray spectroscopy) measurements of attached fouling material. The results showed that TRO generation concentration and RNO degradation concentration in according to each type of cathode are not different. The attached fouling materials were observed on the surface of Ti and the JP520 electrode by the observation of SEM after electrolysis for two hours, but it was not observed on the surface of Pt electrode. When considering the surface ohmic drop of cathode and the attached fouling materials, Pt electrode was judged as the excellent cathode.

Optimization of Amorphous Indium Gallium Zinc Oxide Thin Film for Transparent Thin Film Transistor Applications

  • Shin, Han Jae;Lee, Dong Ic;Yeom, Se-Hyuk;Seo, Chang Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.352.1-352.1
    • /
    • 2014
  • Indium Tin Oxide (ITO) films are the most extensively studied and commonly used as ones of TCO films. The ITO films having a high electric conductivity and high transparency are easily fabricated on glass substrate at a substrate temperature over $250^{\circ}C$. However, glass substrates are somewhat heavy and brittle, whereas plastic substrates are lightweight, unbreakable, and so on. For these reasons, it has been recently suggested to use plastic substrates for flexible display application instead of glass. Many reaearchers have tried to produce high quality thin films at rood temperatures by using several methods. Therefore, amorphous ITO films excluding thermal process exhibit a decrease in electrical conductivity and optical transparency with time and a very poor chemical stability. However the amorphous Indium Gallium Zinc Oxide (IGZO) offers several advantages. For typical instance, unlike either crystalline or amorphous ITO, same and higher than a-IGZO resistivity is found when no reactive oxygen is added to the sputter chamber, this greatly simplifies the deposition. We reported on the characteristics of a-IGZO thin films were fabricated by RF-magnetron sputtering method on the PEN substrate at room temperature using 3inch sputtering targets different rate of Zn. The homogeneous and stable targets were prepared by calcine and sintering process. Furthermore, two types of IGZO TFT design, a- IGZO source/drain material in TFT and the other a- ITO source/drain material, have been fabricated for comparison with each other. The experimental results reveal that the a- IGZO source/drain electrode in IGZO TFT is shown to be superior TFT performances, compared with a- ITO source/drain electrode in IGZO TFT.

  • PDF

ZnO Nanostructure Characteristics by VLS Synthesis (VLS 합성법을 이용한 ZnO 나노구조의 특성)

  • Choi, Yuri;Jung, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.617-621
    • /
    • 2009
  • Zinc oxide (ZnO) nanorods were grown on the pre-oxidized silicon substrate with the assistance of Au and the fluorine-doped tin oxide (FTO) based on the catalysts by vapor-liquid-solid (VLS) synthesis. Two types of ZnO powder particle size, 20nm, $20{\mu}m$, were used as a source material, respectively The properties of the nanorods such as morphological characteristics, chemical composition and crystalline properties were examined by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) and field-emission scanning electron microscope (FE-SEM). The particle size of ZnO source strongly affected the growth of ZnO nanostructures as well as the crystallographic structure. All the ZnO nanostructures are hexagonal and single crystal in nature. It is found that $1030^{\circ}C$ is a suitable optimum growth temperature and 20 nm is a optimum ZnO powder particle size. Nanorods were fabricated on the FTO deposition with large electronegativity and we found that the electric potential of nanorods rises as the ratio of current rises, there is direct relationship with the catalysts, Therefore, it was considered that Sn can be the alternative material of Au in the formation of ZnO nanostructures.

Physical Property Change of the Gapless Semiconductor $PbPdO_2$ Thin Film by Ex-situ Annealing

  • Choo, S.M.;Park, S.M.;Lee, K.J.;Jo, Y.H.;Park, G.S.;Jung, M.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.371-372
    • /
    • 2012
  • We have studied lead-based gapless semiconductors, $PbPdO_2$, which is very sensitive to external parameters such as temperature, pressure, electric field, etc[1]. We have fabricated pure $PbPdO_2$, Co- and Mn-doped $PbPdO_2$ thin films using the pulsed laser deposition. Because of the volatile element of Pb, it is very difficult to grow the films. Note that in case of $MgB_2$, Mg is also volatile element. So in order to enhance the quality of $MgB_2$, some experiments are carried out in annealing with Mg-rich atmosphere [2]. This annealing process with volatile element plays an important role in making smooth surface. Thus, we applied such process to our studies of $PbPdO_2$ thin films. As a result, we found the optimal condition of ex-situ annealing temperature ${\sim}650^{\circ}C$ and time ~12 hrs. The ex-situ annealing brought the extreme change of surface morphology of thin films. After ex-situ annealing with PbO-rich atmosphere, the grain size of thin film was almost 100 times enlarged for all the thin films and also the PbO impurity phase was smeared out. And from X-ray diffraction measurements, we determined highly crystallized phases after annealing. So, we measured electrical and magnetic properties. Because of reduced grain boundary, the resistivity of ex-situ annealed samples changed smaller than no ex-situ sample. And the carrier densities of thin films were decreased with ex-situ annealing time. In this case, oxygen vacancies were removed by ex-situ annealing. Furthermore, we will discuss the transport and magnetic properties in pure $PbPdO_2$, Co- and Mn-doped $PbPdO_2$ thin films in detail.

  • PDF

The Comparision of X-ray Detection Characteristics as Additive ratio of As in a-Se of $BrO_2/a-Se$ Film ($BrO_2/a-Se$ 필름의 a-Se에 첨가된 As 변화에 따른 X선 검출특성 비교)

  • Park, Ji-Koon;Choi, Jang-Yong;Kim, Dae-Hwan;Moon, Chi-Wung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.424-427
    • /
    • 2002
  • In this papaer, there is a basic research for the development of the Hybrid digital radiation detector with a new system, make up for existing digital radiation detector of direct/indirect method with a weak point. for enhance the efficiency characteristics of signal response from X-ray detector using the a-Se, We make sample with various kinds of layer, through the ratio of As(0.l%,0.3%,0.5%,1%,1.5%,5%,10%). We measure net charge with a leakage current and photo current for electric charateristics. Ratio of As in a-Se consist of 7 stage, It made of using the thermal deposition system, In the made of samples, we made multi layer using the EFIRON optical adhesives from phosphor layer consist of Oxybromide$(BrO_2)$. As a result of X-ray measurement, the best result is ; leakage current(0.30nA/cm2), net charge(610.13pC/cm2/mR) when the condition is voltage(9V/um), 0.3% ratio of As in multi layer(BrO2 + a-Se)

  • PDF

Fabrication of Thick SmBCO/IBAD-MgO coated conductor (후막 SmBCO/IBAD-MgO 초전도 박막선재의 제조)

  • Lee, J.H.;Kang, D.K.;Ha, H.S.;Ko, R.K.;Oh, S.S.;Kim, H.K.;Yang, J.S.;Jung, S.W.;Moon, S.H.;Youm, D.;Kim, C.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.9-9
    • /
    • 2009
  • Coated conductor is required to have good critical current property for high efficiency of electric power applications. Until now, long coated conductor does not show high Jc over 3 MA/$cm^2$ in thick superconducting layer because of texture degradation by thick superconducting layer. In this study, in order to overcome this issue, thicker superconducting layer was deposited with optimized conditions to reduce the degradation of critical current density. SmBCO superconducting coated conductor was deposited with 1~3 um of thickness at $750\sim850^{\circ}C$ under 15~20 mTorr of oxygen partial pressure using batch type EDDC( evaporation using drum in dual chamber). The buffered substrate for superconducting layer deposition was used IBAD-MgO template with the architecture of $LaMnO_3/MgO/Y_2O_3/Al_2O_3$/Hastelloy. After fabrication of coated conductor, critical current was measured by 4-prove method under self-magnetic field and 77K. In addition, surface morphology and texture were analyzed by SEM and XRD, respectively. 3 um thick SmBCO coated conductor shows highest $I_C$ values of 638A/cm-w in 1 m long in the world.

  • PDF

The Properties of Pb(Zr,Ti)$\textrm{O}_3$ Thin Films Fabricated by 2-Step Method (2단계 증착법으로 제조된 Pb(Zr,Ti)$\textrm{O}_3$ 박막의 특성)

  • Nam, Hyo-Jin;No, Gwang-Su;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1152-1157
    • /
    • 1998
  • The PZT films were deposited on the Pt/Ti/$SiO_2$/Si substrates using multi- target DC magnetron reactive sputtering. The perovskite single phase with the composition close to the stoichiometric one, was obtained even at high substrate temperature of $540^{\circ}C$ by 2-step method, which is that PZT film was deposited for a short time at low substrate temperature ($480^{\circ}C$) to promote the nucleation of perovskite phase by reducing the volatility of Pb oxide molecules, followed by the deposition at the elevated temperature to suppress the excess incorporation of Pb component in the PZT film. This two-step method, in combination with the RTA treatment, gives rise to good electrical properties of the deposited PZT films: remanent polarifaion,$18\mu$C/$\textrm{cm}^2$; coercive field, 45kV/cm; leakage current of 10$^{-4}$ A/$\textrm{cm}^2$ at high electric field of -500kV/cm.

  • PDF

Effects of Ag and Cu Additions on the Electrochemical Migration Susceptibility of Pb-free Solders in Na2SO4 Solution

  • Yoo, Y.R.;Nam, H.S.;Jung, J.Y.;Lee, S.B.;Park, Y.B.;Joo, Y.C.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.50-55
    • /
    • 2007
  • The smaller size and higher integration of advanced electronic package systems result in severe electrochemical reliability issues in microelectronic packaging due to higher electric field under high temperature and humidity conditions. Under these harsh conditions, electronic components respond to applied voltages by electrochemical ionization of metal and the formation of a filament, which leads to short-circuit failure of an electronic component, which is termed electrochemical migration. This work aims to evaluate electrochemical migration susceptibility of the pure Sn, Sn-3.5Ag, Sn-3.0Ag-0.5Cu solder alloys in $Na_{2}SO_{4}$. The water drop test was performed to understand the failure mechanism in a pad patterned solder alloy. The polarization test and anodic dissolution test were performed, and ionic species and concentration were analyzed. Ag and Cu additions increased the time to failure of Pb-free solder in 0.001 wt% $Na_{2}SO_{4}$ solution at room temperature and the dendrite was mainly composed of Sn regardless of the solders. In the case of SnAg solders, when Ag and Cu added to the solders, Ag and Cu improved the passivation behavior and pitting corrosion resistance and formed inert intermetallic compounds and thus the dissolution of Ag and Cu was suppressed; only Sn was dissolved. If ionic species is mainly Sn ion, dissolution content than cathodic deposition efficiency will affect the composition of the dendrite. Therefore, Ag and Cu additions improve the electrochemical migration resistance of SnAg and SnAgCu solders.