• Title/Summary/Keyword: electric activation

Search Result 259, Processing Time 0.029 seconds

Activated carbons prepared from mixtures of coal tar pitch and petroleum pitch and their electrochemical performance as electrode materials for electric double-layer capacitor

  • Lee, Eunji;Kwon, Soon Hyung;Choi, Poo Reum;Jung, Ji Chul;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.78-85
    • /
    • 2015
  • Activated carbons (ACs) were prepared by activation of coal tar pitch (CTP) in the range of $700^{\circ}C-1000^{\circ}C$ for 1-4 h using potassium hydroxide (KOH) powder as the activation agent. The optimal activation conditions were determined to be a CTP/KOH ratio of 1:4, activation temperature of $900^{\circ}C$, and activation time of 3 h. The obtained ACs showed increased pore size distribution in the range of 1 to 2 nm and the highest specific capacitance of 122 F/g in a two-electrode system with an organic electrolyte, as measured by a charge-discharge method in the voltage range of 0-2.7 V. In order to improve the performance of the electric double-layer capacitor electrode, various mixtures of CTP and petroleum pitch (PP) were activated at the optimal activation conditions previously determined for CTP. Although the specific capacitance of AC electrodes prepared from CTP only and the mixtures of CTP and PP was not significantly different at a current density of 1 A/g, the AC electrodes from CTP and PP mixtures showed outstanding specific capacitance at higher current rates. In particular, CTP-PP61 (6:1 mixture) had the highest specific capacitance of 132 F/g, and the specific capacitance remained above 90% at a high current density of 3 A/g. It was found that the high specific capacitance could be attributed to the increased micro-pore volume of ACs with pore sizes from 1 to 2 nm, and the high power density could be attributed to the increased meso-pore volume.

Parthenogenetic Activation of Pig Oocytes Matured in-Vitro with Ethanol and Electrical Stimulus

  • Y. J. Chang;Y. J. Yi;Kim, M. Y.;Park, C. S.
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.62-62
    • /
    • 2003
  • This study was carried out to investigate the effects of activation agents on parthenogenetic activation of pig oocytes matured in vitro. The medium used for oocyte maturation was tissue culture medium (TCM) 199 supplemented with 26.19 mM sodium bicarbonate, 0.9 mM sodium pyruvate, 10 $\mu\textrm{g}$/ml insulin, 2 $\mu\textrm{g}$/ml vitamin $B_{l2}$, 25 mM Hepes, 10 $\mu\textrm{g}$/ml bovine apotransferrin, 150 $\mu$M cysteamine, 10 IU/ml PMSG, 10 IU/ml hCG, 10 ng/ml EGF, 0.4% BSA, 75 $\mu\textrm{g}$/ml sodium penicillin G, 50 $\mu\textrm{g}$/ml streptomycin sulfate and 10% pFF. After about 22 h of culture, oocytes were cultured without cysteamine and hormones for 22 h at 38.5$^{\circ}C$, 5% $CO_2$ in air. Cumulus-free oocytes involving first polar body were activated by exposure to various concentrations of ethanol and exposure time of ethanol in Hepes-buffered NCSU23 medium. Also, oocytes were activated by electric pulse alone or combination with ethanol. For electrical activation, oocytes were rinsed twice in 0.3 M mannitol solution supplemented with 0.1 mM CaC1$_2$, 0.2 mM MgC1$_2$, 0.5 mM Hopes and 0.01% BSA, and transferred to a chamber consisting of two electrodes 1 mm apart which was overlaid with the same activation solution. Oocytes were activated with a single DC pulse of 1.3 ㎸/cm for 30 $\mu$sec. After activation treatments, oocytes were washed three times with Hepes-buffered NCSU23 medium and were washed twice with NCSU23 culture medium containing 0.4% BSA, and then cultured in 500 ${mu}ell$ of the same medium for 20 h at 38.5$^{\circ}C$, 5% $CO_2$ in air. The activation rates of oocytes were higher in 6, 7 and 8% ethanol concentrations compared with 0, 5, 9 and 10% ethanol concentrations. Significantly more oocytes (29.3~33.7%) were activated in the exposure for 8, 10, 12 and 15 min than those in the exposure for 0 and 5 min, but there was no difference due to exposure to 8% ethanol for 8 to 15 min. Electric pulse treatment followed by exposure to ethanol significantly improved the rate of oocyte activation (61.9%) compared with that of other 3 treatments. In conclusion, the optimal activation treatment of ethanol exposure alone for the in-vitro matured pig oocytes was 8% ethanol for 8 to 15 min. Electric pulse treatment followed by ethanol exposure significantly improved the rate of activation.n.

  • PDF

A Study on the Temperature Dependence of Electro-Rheological Fluids with Electric Field Control (전기장 제어에 따른 ER유체의 온도 의존성에 관한 연구)

  • Jang, Sung-Cheol;Park, Chang-Soo;Lee, Chan-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.67-72
    • /
    • 2004
  • Electro-Rheological(ER) fluids consist of suspensions of fine polarizable particles In a dielectric oil, which upon application of an external electric field control take on the characteristics of the Bingham solid. In this study, the temperature dependence of the viscosity was Investigated for an ER fluid consisting of 35 weight % of zeolite particles in hydraulic oil 46cSt. Thermal activation analysis was performed by changing the ER fluid's temperature from $-10^{\circ}C$ to $50^{\circ}C$. According to the analysis, the activation energy for flow of the ER fluid was 79.6 kJ/mole without applying electric field. On the other hand, with the electric field of 2kV/mm, the linearity between viscosity and temperature was not existed By changing the temperatures the viscosity (or shear stress) versus shear rates were measured. In this experiment shear rates were increased from 0 to $200s^{-1}$ in 2 minutes. Generally, the hydraulic oil 46cSt will be operated at the temperature of about $40^{\circ}C$, thus, the ER fluid's electric field dependence of viscosity was examined at this temperature. Also, an influence of adding the dispersant(Carbopl 940) on ER effect was discussed.

  • PDF

Effects of Electric and Magnetic Fields to Seed Germination and Its Early Growth (전계와 자계가 식물씨앗의 발아와 초기생장에 미치는 영향)

  • Moon, Jae-Duk;Kyon, Nam-Yul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.6
    • /
    • pp.328-333
    • /
    • 2006
  • All the plants on earth live under an electric and magnetic field because the earth is a magnet and there is an electric field between the charged cloud and the ground. It has been reported that electromagnetic fields influence both the activation of ions and polarization of dipoles in living cells of seeds and plants, though the mechanism of these actions is still poorly understood. In this paper, the effects of the electric and magnetic fields and exposure times to the germination of several vegetable seeds and its early growth have been investigated experimentally to find out the feasibility of a plant factory for mass production of clean and unpolluted vegetables. The germination rate and the growth rate of some seeds under the fields exposed were analysed and compared with those of unexposed ones. It is found that the germination rate and its early growth rate of exposed seeds under the fields were accelerated about 1.1-1.4 and 1.7-2.2 times in maximum compared with those of unexposed ones. But, however, an inhibitory effect on germination and plant early growth were shown in the case of the higher electric and magnetic fields.

Preparation and Characterization of high-quality activated carbon by KOH activation of pitch precursors (KOH 활성화에 의한 피치계 고품질 활성탄의 제조 및 특성)

  • Lee, Eun-Ji;Kwon, Soon-Hyung;Choi, Poo-Reum;U, Jong-Pyo;Jung, Ji-Chul;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.408-415
    • /
    • 2014
  • In order to prepare high-quality activated carbons (ACs), coal tar pitch (CTP), and mixtures of CTP and petroleum pitch (PP) were activated with KOH. The ACs prepared by activation of CTP in the range of $700{\sim}1000^{\circ}C$ for 1~5 h had very porous textures with large specific surface areas of $2470{\sim}3081m^2/g$. The optimal activation conditions of CTP were determined as CTP/KOH ratio of 1:4, activation temperature of $900^{\circ}C$, and activation time of 3 h. The obtained AC showed the highest micro-pore volume, and pretty high specific surface area and meso-pore volume. The micro-pore volumes and specific areas of activated mixtures of CTP and PP were similar to each other but the meso-pore volume could be increased. In order to change the degree of crystallinity of precursors before KOH activation process, the CTPs were carbonized in the range of $500{\sim}900^{\circ}C$. As the carbonization temperature increased, the specific surface area and pore volume of the activated ACs with the same activation conditions for CTP decreased dramatically. It was demonstrated that the increased pore size distribution of AC electrodes in the range of 1 to 2 nm plays an important role in the performance of electric double-layer capacitor.

Preparation and Characterization of Carbon Nanotubes-Based Composite Electrodes for Electric Double Layer Capacitors

  • Seo, Min-Kang;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1523-1526
    • /
    • 2012
  • In this work, we prepared activated multi-walled carbon nanotubes/polyacrylonitrile (A-MWCNTs/C) composites by film casting and activation method. Electrochemical properties of the composites were investigated in terms of serving as MWCNTs-based electrode materials for electric double layer capacitors (EDLCs). As a result, the A-MWCNTs/C composites had much higher BET specific surface area, and pore volume, and lower volume ratio of micropores than those of pristine MWCNTs/PAN ones. Furthermore, some functional groups were added on the surface of the A-MWCNTs/C composites. The specific capacitance of the A-MWCNTs/C composites was more than 4.5 times that of the pristine ones at 0.1 V discharging voltage owing to the changes of the structure and surface characteristics of the MWCNTs by activation process.

Experimental Investigation on the Flow Characteristics of ER Fluids II (2nd Report, Viscosity-Temperature Characteristics of Dispersive ER Fluids) (ER 유체의 유동특성에 관한 실험적 연구 II (분산계 ER 유체의 점도-온도 특성))

  • 김도태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.393-398
    • /
    • 1999
  • The temperature dependence of the viscosity was determined for an electrorheological(ER) fluid consisting of 35 weight% zeolite particles in hydraulic oil 46cSt. Thermal activation analysis were performed by changing the ER fluid's temperature from -1$0^{\circ}C$ to 5$0^{\circ}C$ at fixed electric field. According to the analysis, the activation energy for flow was about 79.64kJ/mole at E=0kV/mm. Generally, the hydraulic oil 46cSt will be operated at the temperature of about 4$0^{\circ}C$, the ER fluid's electric field dependence of viscosities were investigated at this temperature. also, the influence of adding the dispersant(Carbopl 940) on electrorheological effect of the ER fluid was discussed.

  • PDF

Electrochemical Characteristics of Highly Porous Carbon Prepared by Chemical Activation Method for EDLC (화학적 활성법으로 제조된 EDLC용 고다공성 탄소전극의 전기화학 특성)

  • Eo, Soo-Mi;Kim, Han-Joo;Oh, Seung-Mo;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2010-2012
    • /
    • 2005
  • Activated carbon was activated with chemical treatment to attain high surface area with porous structure. We have been considered activated carbon is the ideal material for high voltage electric double layer capacitor due to their high specific surface area, good conductivity and chemical stability. In this study we found that increase in electrochemical capacitance due to activated carbon. Also chemically activated carbon and water treatment have resulted larger capacitance and also exhibits better electrochemical behavior, and is about 15% more than in untreated state. The structural change in activated carbon through chemical treatment activation was investigated by using SEM and XRD. In this study, the dependence of the activation behavior with KOH in the micro structure of host materials will be discussed. Furthermore, the relation to the electric double layer capacitance, especially the specific capacitance per unit area, is also discussed.

  • PDF

A Study of LA Counter Over-activation in AC Electric railway Substation (AC 전철변전소의 피뢰기카운터 과동작에 관한 연구)

  • Cheon, Hee-Seung;Jang, Woo-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.132-139
    • /
    • 2008
  • In an electric railway feeding system, transient over-voltage often appears due to the feeder's direct lightning and induced lightning, while switching over-voltage also frequently occurs during operation of electric feeding in substation facilities. Such over-voltage is several times larger than the regular power, and accordingly leads to the dieletric breakdown of eletric power products such as invasion transformers and circuit breakers. Arresters are installed to protect these machines, while arrester counters are installed to observe the arrester's activation. This thesis aims to explore the status of an arrester counter that is being activated several thousand times, determine whether the arrester has actually been activated in relation to the counter, and investigate the over-heatedness and risks of the arrester.

  • PDF