• Title/Summary/Keyword: elastomers

Search Result 1,668, Processing Time 0.026 seconds

Kinetics of Anhydride Curing of Epoxy : Effect of Chain Length of Anhydride (에폭시 무수화물 경화의 동력학적 연구: 무수화물의 사슬 길이 효과)

  • Chung, I.;Lee, J.
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.3-11
    • /
    • 2005
  • The ruling kinetics of epoxy resins with 3 different kinds or alkenylsuccinic anhydride (ASA) having C-8, C-12, and C-16 pendant side chain length with two different catalysts was studied by using differential scanning calorimetry (DSC). Nonisothermal and isoconversional method has been used for characterizing the effect of the pendant side chain length in the curing process. Results or nonisothermal method showed that there was no significant difference in the effect of the pendant side chain length of ASA. But isoconversional analysis showed that the value of the activation energy for the initiation reaction or C-8, C-12, and C-16 were $61.7{\sim}57.7kJ/mol$, $63.0{\sim}57.3 kJ/mol$, and $130.4{\sim}94.2 kJ/mol$, respectively, depending on the catalyst used. The values of activation energy for the initiation is different as reported value of 20 kJ/mol which indicating the difference in the effect of the pendant side chain length of ASA in the initial stage of the reaction.

Preparation and Characterization of Emulsified Chlorosulfonated Polyethylene Rubber (CSM) (유화 Chlorosulfonated Polyethylene Rubber (CSM)의 제조 및 특성 연구)

  • Choi, Seo-Young;Lee, Eun-Kyoung;Choi, Kyo-Chang
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.12-21
    • /
    • 2005
  • In this work, magnesium carbonate and calcium hydroxide as metallic crosslinking agent were added to chlorosulfonated polyethylene rubber (CSM) emulsion to enhance the mechanical properties of emulsion film such as tensile strength, elongation at break, and tear strength and crosslinking density, thermal features, and surface energy were also investigated. Crosslinking density of the CSM emulsion film with increasing the amount of magnesium carbonate and calcium hydroxide increased, leading to the enhancement of water resistance. It was shown that compared with calcium hydroxide, magnesium carbonate had a little higher crosslinking density and $T_g$ value. The surface energy and mechanical characteristics of the CSM emulsion film, however, showed somewhat different behaviors. The highest surface energy, tensile strength, and tear strength were observed when 0.75% for magnesium carbonate and 1.0% for calcium hydroxide were added respectively. Therefore, it can be concluded that as metallic crosslinking agent to improve water resistance and mechanical properties of the CSM emulsion, magnesium carbonate is more preferable to calcium hydroxide.

Ultrasonic, Chemical Stability and Preparation of Self-Assembled Fullerene$[C_{70}]$-Gold Nanoparticle Films (자기조립 풀러렌$[C_{70}]$-금 나노입자 필름 제조와 초음파적, 화학적 안정성)

  • Ko, Weon-Bae;Shon, Young-Seok
    • Elastomers and Composites
    • /
    • v.40 no.4
    • /
    • pp.272-276
    • /
    • 2005
  • [ $C_{70}$ ]-gold nanoparticle multilayer films were self-assembled using a 'dirt-ball' method on the reactive surface of glass slides functionalized with 3-aminopropyltrimethoxysilane. The functionalized glass slides were soaked in the solution containing both unmodified $C_{70}$ and ${\omega}$-amino-functionalized gold nanoparticles. Organic reaction (amination) facilitated the assembly of multilayer $C_{70}$-gold nanoparticle films, which have grown up to several layers. Chemical stability of $C_{70}$-gold nanoparticle films was studied by monitoring the changes in absorbance after the immersion of the films in acidic solution. In addition, ultrasonic stability of these nanoparticle films was studied by exposing them to ultrasonic irradiated surrounding, which resulted in partial desorption and a little aggregation of nanoparticles on solid surfaces.

Filler-Elastomer Interactions. 11. Influence of Atmospheric Pressure Plasma on Surface Properties of Nanoscaled Silicas (충전재-탄성체 상호작용. 11. 상압플라즈마 처리가 나노구조의 실리카 표면특성에 미치는 영향)

  • Park, Soo-Jin;Jin, Sung-Yeol;Kaang, Shin-Young
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.22-28
    • /
    • 2005
  • In this work, the effect of oxygen plasma treatment of nano-scaled silica on the mechanical interfacial properties and thermal stabilities of the silica/rubber composites was investigated. The surface properties of the silica were studied in X-ray photoelectron spectroscopy (XPS) and contact angles. And, their mechanical interfacial properties and thermal stabilities of the composites were characterized by tearing energy ($G_{IIIC}$) and thermogravimetric analysis (TGA), respectively. As a result, it was found that the introduction rate of oxygen-containing polar functional groups onto the silica surfaces was increased by increasing the plasma treatment time, resulting in improving the tearing energy. Also, the thermal stabilities of the composites were increased by increasing the treatment time. These results could be explained that the polar rubber, such as acrylonitrile butadiene rubber (NBR), showed relatively a high degree of interaction with oxygen-containing functional groups of the silica surfaces in a compounding system.

Improvement of Properties of Silica-Filled SBR Compounds Using NBR: Influence of Separate Load of SBR and NBR (NBR를 이용한 실리카로 보강된 SBR 배합물의 특성 향상 : SBR과 NBR의 분리 첨가 배합의 영향)

  • Choi, Sung-Seen;Kim, Beom-Tae
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.29-36
    • /
    • 2005
  • Mixing condition and procedure affect properties or a filled rubber compound such as filler dispersion, viscosity, and bound rubber formation. Influence of separate load of styrene-butadiene rubber (SBR) and acrylonitrile-butadiene rubber (NBR) on properties or silica-filled SBR compounds containing NBR was studied. Cure time and cure rate became faster as NBR content increased. The crosslink density increased with increase in the NBR content. The bound rubber content also increased as the NBR content increased. NBR content of the bound rubber was higher than that of the compounded rubber. The bound rubber content was higher when SBR and NBR were loaded separately than when loading simultaneously. The cure time and cure rate were slower for the separate load than for the simultaneous one. The crosslink density was also lower for the former case than for the latter one.

The Oxidation of Fullerene[$C_{60}$] using Several Oxidants under Microwave Irradiation (마이크로파 조건에서 여러가지 산화제를 이용한 풀러렌[$C_{60}$의 산화반응)

  • Ko, Weon-Bae;Hwang, Sung-Ho;Ahn, Ju-Hyun
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.45-52
    • /
    • 2005
  • Synthesis or fullerene oxides[$C_{60}(O)_n$] ($n=1{\sim}4$ or n=1) by fullerene[$C_{60}$] and several oxidants such as 3-chloroperoxy benzoic acid, benzoyl peroxide, trichloroisocyanuric acid, and chromium(VI) oxide took place under microwave irradiation. The reactivity in solid state of fullerene[$C_{60}$] with various oxidants under same microwave rendition increased in order or 3- chloroperoxy benzoic acid > benzoyl peroxide > trichloroisocyanuric acid $\simeq$chromium(VI) oxide. The MALDI-TOF-MS, UV-visible spectra and HPLC analysis confirmed that the products of fullerene oxidation were [$C_{60}(O)_n$] ($n=1{\sim}4$ or n=1).

Effect of Substituent of Chain Transfer agent in the Free Radical Polymerization (자유 라디칼 중합반응에서 사슬이동제의 치환기 효과)

  • Chung, I.
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.53-58
    • /
    • 2005
  • Carbon tetrachloride is very reactive chain transfer agent due to the resonance stability of the trichlorocarbon radicals after breaking of C-Cl bond. Effect of benzylic radical comparing to trichlorocarbon radicals in the chain tranrfer reactions was investigated. From the structural point of view, cumyl chloride is a good candidate because it has the C-Cl bond with benzylic radicals after displacement of C-Ci bond. The reactivity of free radical polymerization of styrene in the presence of cumyl chloride was compared with that of carbon tetrachloride by calculating chain transfer constants. Results show that the cumyl chloride acts as a stronger chain transfer agent than carbon tetrachloride. The calculated chain transfer constant of cumyl chloride shows higher value (0.0463) than that of carbon tetrachloride (0.0011) in the styrene polymerization. High reactivity of cumyl chloride comparing to that of carbon tetrachloride is probably due to the higher resonance stability or benzylic radical than that or trichlorocarbon radicals after breaking of C-Cl bond. Monte Carlo simulation method is applied for characterizing the validity of kinetic constants according to the ratio of chain transfer agent to monomer.

Preparation and Properties of EPDM/Zinc Methacrylate Hybrid Composites (에틸렌 프로필렌 디엔 고무/메타크릴산아연 하이브리드 복합체의 제조와 물성에 관한 연구)

  • Chang, Young-Wook;Won, Jong-Hoon;Joo, Hyun-Seok
    • Elastomers and Composites
    • /
    • v.40 no.1
    • /
    • pp.59-65
    • /
    • 2005
  • Zinc methacrylate(ZMA) was incorporated into ethylene-propylene diene rubber(EPDM) by direct mixing of the metal salt with the rubber or was in-situ prepared in the rubber matrix through neutralization reaction of zinc oxide(ZnO) and methacrylic acid(MAA). Tensile and tear tests showed that ZMA had a great reinforcing effect for the EPDM. It was also found that ZMA reinforced EPDM vulcanizates can retain their mechanical properties under thermo-oxidative aging. Moreover the incorporation of ZMA induces a substantial improvement in the adhesive strength of the EPDM onto aluminum substrate. The reinforcing effect and an enhancement in adhesion was greatly manifested when the ZMA is in-situ formed with an excess amount of ZnO. The extraordinary improvement in the properties is supposed to be related with the formation of ionic crosslink as well as the degree of dispersion or ZMA domain in the rubber matrix.

Effect of Thermal Aging Temperature on Weight Loss and Glass Transition Temperature of Epoxy Adhesives (열화 온도가 에폭시 접착제의 질량변화 및 유리전이온도에 미치는 영향)

  • Park, Soo-Jin;Kim, Jong-Hak;Joo, Hyeok-Jong;Kim, Joon-Hyung;Jin, Fan-Long
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • In this study, the effect of thermal aging temperature on the weight loss, glass transition temperature, and morphology of epoxy adhesives cured with amine (D-230), amide (G-5022), and anhydride (HN-2200) was investigated. As a result, the weight loss of three specimens was increased with increasing the thermal aging temperature. The result was attributed to the thermal aging which was occurred at the surface of adhesive specimens at high aging temperature, resulting in increasing the weight loss of the specimens. According to the DSC result, the glass transition temperature of DGEBA/D-230 and DGEBA/G-5022 samples war increased as the aging temperature increased, whereas the glass transition temperature of DGEBA/HN-2200 samples was constant above aging temperature of $150^{\circ}C$ and aging tine of 7 days. The SEM result indicated that the surface of DGEBA/G-5022 specimen showed more rough topography than that of DGEBA/D-230 or DGEBA/HN-2200 specimen after thermal aging. This could be correlated with the result of weight loss.

A study on the Synthesis end Properties of Polyurethane Resin Based on PPG as a Glycol (폴리프로필렌글리콜을 글리콜 성분으로 하는 폴리우레탄 수지의 합성 및 물성에 관한 연구)

  • Yoo, Kil-Sang;Choi, Sang-Goo
    • Elastomers and Composites
    • /
    • v.35 no.3
    • /
    • pp.205-214
    • /
    • 2000
  • The polyurethane resin was prepared by the reaction of tolylenediisocyanate(TDI) and polypropyleneglycol(PPG). Physical properties of the resin were investigated experimentally. Charging catalyst before TDI-dropping induced the rapid increase of viscosity. On the other hand, charging catalyst after TDI-dropping resulted in mild stability without immoderate generation of heat on reaction. The use of phosphoric acid as catalyst led to low viscosity by restraining side-reaction such as forming of branch-chain, buret reaction and allopanate reaction, but it showed low cross-link density and slow drying. The curing speed was more influenced by structures of molecules rather than NCO/OH ratio. Including PPG 400 over 30 wt % showed excellent adhesive strength due to increase of crosslink density.

  • PDF