• Title/Summary/Keyword: elasto-plasticity

Search Result 168, Processing Time 0.023 seconds

Parametric Process Design of the Tension Levelling with an Elasto-plastic Finite Element Method (탄소성 유한요소법을 이용한 금속인장교정기의 공정변수 설계)

  • Park S. R.;Lee H. W.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.42-48
    • /
    • 2000
  • This paper is concerned with a simulation-based process design for the tension levelling of metallic strips based on the elasto-plastic finite element analysis with reduced integration and hourglass control. The tension levelling process is performed to elongate the strip plastically in combination of tensile and bending strain by a controlled manner so that all longitudinal fibers in the strip have an approximately equal amount of length and undesirable strip shapes are corrected to the flat shape. The analysis deals with a method for calculating the quantitative level of the curl to investigate the roll arrangements and intermesh suitable to elimination of the curl. The analysis provides the information about the intermesh effect on the amount, the tension effect and distribution of the strain as well as the stress in order to determine the amount of elongation for correction of the irregular shape. The desired elongation is referred to determine the number of work rolls and the value of tension. Especially, the analysis investigates tile effect of the mesh size in the non-steady state finite element analysis on the amount and distribution of the strain.

  • PDF

Elasto-plastic damage modelling of beams and columns with mechanical degradation

  • Erkmen, R. Emre;Gowripalan, Nadarajah;Sirivivatnanon, Vute
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.315-323
    • /
    • 2017
  • Within the context of continuum mechanics, inelastic behaviours of constitutive responses are usually modelled by using phenomenological approaches. Elasto-plastic damage modelling is extensively used for concrete material in the case of progressive strength and stiffness deterioration. In this paper, a review of the main features of elasto-plastic damage modelling is presented for uniaxial stress-strain relationship. It has been reported in literature that the influence of Alkali-Silica Reaction (ASR) can lead to severe degradations in the modulus of elasticity and compression strength of the concrete material. In order to incorporate the effects of ASR related degradation, in this paper the constitutive model of concrete is based on the coupled damage-plasticity approach where degradation in concrete properties can be captured by adjusting the yield and damage criteria as well as the hardening moduli related parameters within the model. These parameters are adjusted according to results of concrete behaviour from the literature. The effect of ASR on the dynamic behaviour of a beam and a column are illustrated under moving load and cyclic load cases.

Numerical Simulation of Drawbead Formation in a Binder Wrap Process by an elasto-Plastic Finite Element Method (탄소성 유한요소법에 의한 드로우비드 성형 해석)

  • Choi, Tae-Hoon;Huh, Hoon;Lee, Jang-Hee;Park, Chun-Dal
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.196-202
    • /
    • 1995
  • Drawbead formulation is the first process together with a binder wrap process in a sheet metal forming process. The purpose of a drawbead is to control the flow of the metal into the die in panel press forming. To simulate the drawbead formation process, an elasto-plastic finite element formulation is derived from the equilibrium equation an drelated boundary conditions considering the proper contact conditons. The developed finite element program is applied to drawbead formation in the plane strain condition. The simulation of drawbead formation produces the distribution fo stress and strain along the bead and the resultant elongation of the sheet in the cavity region with respect to various cavity dimensions of the sheet as well as the punch force of a drawbead and the amount of draw-in with respect to the stroke fo a drawbead. The numerical resutls provides the fundamental information as a boundary condition to analyze the complex binder wrap phenomena and panel press forming in simple way.

  • PDF

Sensitivity Analysis of Strain on Notches under Cyclic Loading to 2-D Finite Element Density in Elasto-Plastic Finite Element Analysis (탄소성 유한요소해석시 2차원 유한요소 밀도에 대한 반복하중이 작용하는 노치부의 변형률의 민감도 분석)

  • Jong-Sung Kim;Hyun-Su Jang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • This paper presents sensitivity analysis results of strain on notches under cycling loading to 2-D finite element density considering plasticity. Cylindrical notched specimens having some stress concentrations were modeled with 2-D axisymmetrical finite element having various finite element densities. Elasto-plastic finite element analysis was performed for the various finite element models subjected to cycling loading considering plasticity. The finite element analysis results were compared to investigate sensitivity of the finite element analysis variables such as von-Mises effective stress, accumulated equivalent plastic strain, and equivalent plastic strain to 2-D finite element density. As a result of the comparison, it was found that the accumulated equivalent plastic strain is more sensitive than the others whereas the von-Mises effective stress is much less sensitive.

Modified Integration Algorithm on the Strain-Space for Rate and Temperature Dependent Elasto-Plastic Constitutive model (변형률 공간에서 변형률속도 및 온도를 고려한 구성방정식의 개선된 적분방법)

  • Cho, S.S.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.272-275
    • /
    • 2007
  • This paper is concerned with modified integration algorithm on the strain-space for rate and temperature dependent elasto-plastic constitutive relations in order to obtain more accurate results in numerical implementation. The proposed algorithm is integrated analytically using integration by part and chain rule and then is applied to the 2-stage Lobatto IIIA with second-order accuracy. It has advantage that is able to consider the convective stress rates on the yield surface of the strain-space. Also this paper is carried out the iteration procedure using the Newton-Raphson method to enforce consistency at the end of the step. And the performance of the proposed algorithm for rate and temperature dependent constitutive relation is illustrated by means of analysis of adiabatic shear bands.

  • PDF

Design Sensitivity Analysis for the Sheet Metal Forming Process with an Elasto-plastic Finite Element Analysis and a Direct Differentiation Approach (탄소성 유한요소법과 직접미분법물 이용한 박판성형공정에서의 설계민감도 해석)

  • Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.93-96
    • /
    • 2001
  • Design sensitivity is calculated in the sheet metal forming process with an elasto-plastic finite element analysis and a direct differentiation method The sensitivity analysis is concerned with the time integration the constitutive relation considering planar anisotropy, shell elements and the contact scheme. The present result is compared with the result obtained with the finite difference approach in deep drawing processes. The obtained sensitivity information is applied to the simple optimization process for the sheet metal forming process.

  • PDF

Three-dimensional Analysis for Solidification and Bulging of Continuously Cast (연속 주조의 응고와 벌징에 관한 3차원 해석)

  • Kim Y. D.;Cho J. R.;Lee B. Y.;Ha M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.174-177
    • /
    • 2000
  • In this paper, The bulging behavior of the solidified shell in continuously cast slabs have been numerically analyzed using three-dimensional elasto-plastic and creep finite element method Three-dimensional model has been applied in order to investigate the effect of the narrow face shell on restraining the bulging deflection. Solidification analysis are carried out by two-dimensional finite difference method. In this way, strains occurring at the solidification front near the narrow face of the slab, as well as those occurring in the board face have been computed. The adequacy of the model has been checked against the experimental results. In addition, the effect of the slab width and casting speed on the bulging are discussed.

  • PDF

A Smooth Elasto-Plastic Cap Model(I): Rate Formulation, Yield Surface Determination (연속 탄소성 캡 모델(I): 구성모델 및 항복면의 결정)

  • 서영교
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.15-23
    • /
    • 2001
  • 탄소성 캡 모델의 중요한 장점은 여러 가지 다공체의 전체적인 축차 및 체적의 비선형 상호거동을 동시에 다룰 수 있음에 있다. 그러나 대부분의 캡 모델이 가진 문제점중의 하나는 세 개의 독립적인 항복면이 불연속으로 연결되어 있음으로부터 기인된다. 본 연구에서는 이러한 항복면 사이의 연결점에서의 탄소성 접선 계수는 특이점이 되고 수치해석상 잠재적인 어려움을 내재하고 있음을 나타내고 이러한 문제의 해결방안의 하나로 세 개의 항복면이 연속적으로 만나는 새로운 탄소성 캡 모델을 제시하였다. 본 논문에서는 모델의 증분형태의 구성식 및 새로운 응력을 구하기 위한 활동 항복면의 결정을 판단하는 알고리즘이 제시되었다. 동반 논문에서는 내재적인 응력적분 및 일관적인 접선계수를 유도하였고 예제계산들을 수행하였다.

  • PDF

A Smooth Elasto-Plastic Cap Model(II): Integration Algorithm and Tangent Operator (연속 탄소성 캡 모델(II): 응력적분 및 접선계수)

  • 서영교
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.3
    • /
    • pp.25-32
    • /
    • 2001
  • 보편적인 탄소성 캡 모델은 전통적인 등방 이론에 기초를 두고 있다. 이러한 모델의 응력적분 및 접선 계수의 유도는 여러 가지 논문들에 나타나 있지만 축차 및 체적 거동을 동시에 다루는 내제적인 해석법을 통한 지반해석은 아직까지는 많은 도전이 요구되고 있다. 앞선 동반 논문에서는 비연속적으로 연결된 항복면 사이의 접선 계수는 특이점이 됨을 나타내었고 이에 대하여 새로운 캡 모델의 구성식이 제시되었다. 본 논문에서는 제시된 캡 모델의 비 조건적이고 안정된 내재적 응력적분 및 일관된 탄소성 접선계수를 유도하였다. 또한 간단한 예제를 통하여 모델의 수행능력을 보여주었고 사면안정계산이 수행되었다.

  • PDF

Anisotropic Elasto-Viscoplastic Finite Element Analysis for Polycrystalline Materials (다결정재의 이방성 탄.점소성 유한요소해석)

  • 이용신;김응주
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.71-76
    • /
    • 1997
  • The deformations of polycrystalline materials are modelled by linking a constitutive equation for the crystallographic slip of a single crystal to the macroscopic behavior of the aggregate. In this study, anisotropic elasticity (lattice stretching) of a cubic crystal is incoporated into the anisotropic plasticity from crystallographic slip. The constitutive description for the aggregate, derived from a crystal plasticity theory, is used to formulate a Consistent Penalty Finite Element Method for the anisotropic elasto-viscoplastic deformation of polycrystalline materials. As an application, a plane-strain forging process is simulated and the effects of the initial textures on the deformation behavior of the workpiece are examined.

  • PDF