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A Smooth Elasto-Plastic Cap Model(Il):
Integration Algorithm and Tangent Operator
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Abstract

The widely used elasto-plastic cap models are based on the classical isotropic theory. While numerical integration
algorithms and tangent operators for these models have been presented in the literature, performing implicit analysis
of earthen systems using cap models remains a challenging endeavor. It was shown in the companion paper that
the elasto-plastic tangent operators at the comer points on such yield surfaces were singular, giving rise to the
potential numerical difficulties. To avoid such difficulties associated with corner regions, a novel, three-surface
elasto-plastic cap model in which the three surfaces intersect smoothly was developed. In this paper, an unconditional
stable integration algorithm and expression for consistent tangent operators are presented. Sample computations
demonstrating good performance of the model on the simple material test and the slope stability analysis are

presented.
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. Introduction hardening compression cap surface. In cap models, the

hardening cap is an elliptical surface with a constant

In recent years, a number of computational geome- ratio of major to minor radius, and it intersects the

chanical models have been proposed. The most popular
and widely used models are cap models advanced by
DiMaggio and Sandler(1971). These cap models are
based on classical isotropic elasto-plasticity theory, and

couple the Drucker-Prager failure envelope with a
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failure envelope in a non-smooth fashion.

In companion paper, this non-smooth cap model was
briefly introduced, and the difficulty with singular
tangent operator at the corner regions was highlighted

first. Then, a novel smooth cap model was presented
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along with the active yield surface determination for the
plastic correction. In this paper, a detailed integration
algorithm and expressions for consistent tangent operators
are presented for the completeness of the model. The
integration algorithm presented is based on the Backward
Euler integration of the rate constitutive equations which
give rise to an elasto-predictor, plastic-corrector stress
update algorithm. Differentiation of the incremental stress
update algorithms provides expressions for the so-called
consistent tangent operators which facilitate good convert-
gence characteristics in implicit structural analysis of soil
structures. In the sample computations, the excellent
performance of the mode! is first demonstrated on a
number of simple material test type computations, and

then on full scale slope stability problem.

2. Stress Updates Algorithms
2.1 Case 1 Integration Algorithm

When the elastic trial state leads to (£,)%,,>TOL,, the
trial stress point o¢%,, returns to the surface f,=0 via

a plastic correction. By integration of the associated flow
rule with the Backward Euler integration algorithm, the

plastic strain increment for Case 1 is computed as

~ of N .
Dehi= 7'1%1(‘3—;)”“: 7ns(n—F. ),.,, O

where F, is the partial derivative of F, with respect
to I,. Using the Backward Euler integration rule which
gives rise to plastic-correction of the elastic prediction,

the updated stress can thus be written as

— L7 . »
Op+1= On+1— C: Deyy

=001 =207 hirttne1 F 3K 7 w1 Fe 1 2
and similarly the updated back stress is obtained as
Qn+1=4n+H/‘;Vil+lnn+l 3)

The diviatoric and trace portions of the updated stress can

be written as
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I/ 1
Snt1= Sual T 2BY ni1Batl (4a)

(Il)n+1=(Il)£;r+l +9K3’n+1F'e(II) (4b)

To complete the stress update, the plasticity consistency
parameter .., is computed directly such that the
stresses lie on the Drucker-Prager surface f,=0. The
expression is as follows

~ (f 1)34—1

T 0 2#+9K(Fe)2 (5)

Once 7!, is computed and the stresses have been

updated, then the compression cap parameter can be

updated by the nonlinear equation
Xur1= 2t W (xye1) tH(2ER1) (6)

which must be performed iteratively since % depends

upon the updated value of x,.,.

2.2 Case 2 Integration Algorithm

When the compression cap surface is active, then the
elastic stress predictor must return to the compression cap
surface, which will generally translate and grow/ shrink
during the return map process. (Note: If the portion
of the compression cap surface lying between x and
If(x) is active, then the compression cap surface will
actually be moving inward on the [, axis with a de-
creasing radius, where as if the portion lying between x
and X{(x) is active, the surface translates outward on the
I, axis with an increasing radius R(x). )

Backward Euler integration of the Case 2 associated

flow rule gives a plastic strain increment as follows

~ df; N oF
p_ e (92 2 _or.
AEys1= 7’n+1( aO')nH 7n+1(277 a1, 1)n+1 )
resulting in the following stress update equation

' ~ aFC N
0n+1=02+1+3K7’n+11 ( ol ) —4pu 7%1+177n+1 ®
1 [u+1

Decomposing the updated stress into its deviatoric and

bulk components provides



Swe1=Swi1— 40 Y i1t (%a)
” ~ aF.
(1) ni1=U ;+1+9K72n+1( al, ) (9b)
n+l

Similarly, the compression cap parameter x and the back

stress ¢ have updates of the form

B ~ oF, i
Xpi1=Xu— 30 (xn+1)7%,+1(“ﬁ) (10a)
n+1
Gu1=ant2H 7 1,00 (10b)

The objective of the plastic correction stress update
algorithm for Case 2 is thus to solve the value of the
generalized plastic consistency parameter 2., as well
as I, and x, which satisfy Equations (9b) and (10a) and

the plastic consistency condition, namely

“7];21“2

[1+2Qu+H) 73.]

(f)ni1= 7 — F( 11n+11xn+1):o

(11)
Hence the Case 2 return map involves solving a system
of three highly nonlinear Equations (9b, 10a, 11) for the
three coupled parameters ¥%,,, (I;),., and x,,,. So
that a solution to this system of equations can be reliably
obtained, a robust and fully implicit algorithm is develop-

ed below.

Table 1. Fully implicit return map algorithm for Case 2

Since a sequential linearization algorithm is used to
solve the system, the total derivative of £, with respect

to ¥%,, is needed, and is thus computed as

dfy _ _ dlzall? _( aFC) dl, _( aFC) dx
d75n dvin ah | dvis, ax ) dyha
(12)

Since the derivatives of (7;),,, and x,,, are coupled,

they must be written as follows

dl,

Ay Apl| 5| [ 4

[ A 42 d¥any [ 7] (13)
dyin

where

- i a “ °F
_ 2 c _ 2 c
a=11 9K7n+1(—aﬁ ) 9K7n+1( allax)

3h”yiﬂ( 9 F”) 1+39i+1[h"( aF6)+h’( Ll )]

oF al, ol,0x
(14a)
oF,
F= 9K( azl) (14b)
| OF,
—Bh( o7 )

Utilizing Cramer's Rule, the desired derivatives can be

straightforwardly obtained as follows

k=0

(Il)flﬂz(lx e xf,ﬂ=xi,'ﬂ; ﬂf,ﬂ:??ln'ﬂ
compute (£,) 541 = Flam 1, (1) 741, 27:1)
while ( ()%, > TOL; ) then

df k+1
compute ( fz) by equations (12), (15)
d Y 1at+1

NI N d, ThA
( 7’2 n+1=( 72)n+1“(f2[ {22] )
d e n+1

+1

k+1

Compute (f;)5+1 by Equation (11)
k=k+1
End while

return

~ Iteratively update ()51} and x;}} (see Table 2)

Given Y%, (I))ni1 %a41, Update stresses and compute tangent operator
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Table 2. Algorithm for simultaneous update of 7, and » for Case 2

For notational simlicity, let x, =1, and x,=x
j=0

let xi=(l),,, and x}=
compute (x’) by Equation (16)
While ( [|A(x)]| > TOL ) then

%)+, assume prior values (see Table 1)

i g (dr\Th.
X X ( dx )j ¥;
update »(x’*1) by Equation (16)
j=j+1
End while
11’121 __FiAp—FAp (15) the compression cap.
dysme  AnAzn—Apdy Integration of the associated Case 3 flow rule gives the
& __FA —FlAy (15b) following plastic strain increment,
dvii ApnAn—ApAg

With all the preceding derivatives in hand, the fully
implicit closest point projection algorithm for determination
of %%, is shown in Table 1.

Once a trial value of %%, is obtained (in the algo-
rithm of Table 1), then 7, and x must be updated. Due
to the nonlinearity of the updated Equations (9b) and
(10a), the update of I; and x is nontrivial, even with
a fixed value of %2, ,. Defining a residual vector based

on Equations (9b) and (10a) as follows,

~ oF
2 c
r(Il,x)= (Il)n+1 (-’1 nt+1 9K7’n+1( 311) (16)
~ oF
_ , 2 [
x—x,+3h (x,+1) 7n+1( 3, )

a Newton's method based on iterative linerization of the
residual function is presented in Table 2 for updating I,

and x.

2.3 Case 3 Integration Algorithm

When the Case 3 is active, or when the return point
for Case 2 lies in the domain of the tension cap, then
the stress must return to the tension cap surface. Since
the tension cap has a fixed radius, the Case 3 return

mapping algorithm is considerably simpler than that for
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afs ~ 3 _
do )n+1 [ (277

and the corrected stress and back stress can be written as

oF,
31, >

An+1= qut 2HA7’§1+177,1+1

sehi= o5 7,1—1) o an
n+

Gn+l“0n+l+3K7’u+ll( 4/‘3’%1+177n+1 (183)
(18b)

Decomposition of the corrected stresses and back stresses

into deviatoric and bulk components gives

Sp+17 Si’lr+l_4ﬂ3’§1+1”n+l (19a)
oF
(1)1 = (D)1 +9K 7 57
1
:(11)Z+1_18K3’n+1(11)n+1 (19b)

The remaining objective of the return map algorithm is

to enforce the plastic consistency condition

“”n+l”2 _
[1+2@u+ B 73]

(f3)we1= F)ws1=0 (20)
The return map algorithm for Case 3 is necessarily
iterative, and the Newton's method algorithm of Table 3
is very efficient and robust. Once the Case 3 return map
is successfully completes, the compression cap parameter

x is updated iteratively following Equation (6).



Table 3. Return map algorithm for Case 3

k=0

(]I)n+l—'(11 n+1 77n+1 77n+1

compute (f)h, = (f) o= fan, (1D51)

update (7,)%%} by Equation (19b)
compute (f;)%1! by Equation (20)

k=Fk+1
End while

return

While ( ( f3 *+1 > TOL; ) then
k 2 N2 1
compute ( d{%) :[ —4(2p+mngu3 . 9K(F,,>,A3
d7y Jan (1+22u+H) Y) 1-9KF, ¥ |,
- dfs \ ")\
(% = o (fa ( {33) )
d Y n+1

Perform update final update of o¢,,,, @,+,, x,+, and compute tangent operator

3. Consistent Tangent Operators

In modern computational plasticity, it is now recognized
(Simo and Taylor, 1985) that in order to achieve the
asymptotically quadratic rate of force-balance convergence
that is theoretically possible with global Newton-Raphson
force balance iterations, material tangent operators that
are consistent with the implemented (discrete) form of
the constitutive models must be utilized. The consistent

tangent operators are defined as

n+l 8A5n+l

21

Since the derivation of expressions for consistent tangent
operators is conceptually straightforward(Simo and Taylor,
1985), albeit algebraically complex, expressions for the
consistent tangent operators for the three subcases of the
smooth cap model are presented in the following sub-

sections.

3.1 Case 1: Consistent Tangent Operator

The symmetrical Case 1 consistent tangent operator is

computed as follows

ums e Celastzc

3KF 3KF;
_ LZ”""“ (1 9Ky LoiF. H®[2"””“ (1—9K?;+,F; H

9K(F.,)*
Qut B+ gpsi T F
9K2A7£z+1F; 411‘ 7’n+1
PR LLNY A LAl . 22 T arl -
1-9K7 hi F, 181~ N7l [ =1 @]

(22)

3.2 Case 2: Consistent Tangent Operator

The Case 2 consistent tangent operator is computed as

follows

cons _ elastic
ni1=C

—As(1Q7,4+)) — Ag(7,+,B1)

+A7(1®1)_A8(77n+1®77n+1)_ASIdeu (23)
where
9%F,
Al 1 9K7n+\( a[% )
3°F.\| 9%F,
21Kk (75" (—5—12 )( azlax)
+ 3 (24a)
1+3%2%.) »” oF, + K 0 F.
[ ( al, ) o5,0x
9F,
37n+1h( aI )
Ay,= L (24b)

..[ OF, | 9°F.
H37"+l[ h ( ol )“‘( allax)]
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9 F OF,
N a[% 2( 8[13x )
Ay= i (24c)
o°F dl, o°F dx
= < e + < = 24d
A ( 81% ) d?’iﬂ ( 8[18)() d?’iﬂ ( )
A;= LRy | (7)) + A
[14+2@2u+H) ¥3:1] d}f :
n+1
(24e)
12Ky dF .\ 1 Ay IF,
Ag= R
6 [1+2Qu+ D32, dg{;‘z [ ( ol ) A A1( ox ) ]
nti
(249

A7=9K2[A33’i+1

oF, Ag aF,\ 1 . Ay dF.
. [( al, )J’A”"H] [ ( a1, | A, b Al( ox H

d,
d75

(24g)

162 1 +4Qu+H) ¥4,
Ag= L 24h
; _f_"fZ_[ [1+20u+ ) 72,] 240

dri,

8#23’i+1 .
- _ 24
As 1+2Q2u+H) 7%, (24)

Inspection of the above consistent operator proves to
be non-symmetrical arising from the terms with coeffi-
cients A; and Ag. This is to be expected, since the
hardening law governing the cap parameter x is non-
associated, and the Principle of Maximum Plastic Dissi-
pation guarantees a symmetric consistent tangent only for
associated flow rules and associated hardening laws.
Hofstetter et al(1993) developed an associated hardening
law for the cap parameter x, and found that this did
indeed lead to a symmetrical expression for the Case 2
consistent tangent operator. However, implementing an
associated hardening law for x changes the mechanical
response characteristics of the model. Specifically, in the
implementation presented in Hofstetter et al(1993), the
Drucker-Prager envelope and the tension cap yield func-
tions were not expressed as function of x, and con-
sequently, loading on these yield surfaces, which results
in plastic dilatance, does not lead to the usual retraction
of the cap. For this reason, the associated hardening law

proposed in Hofstetter et al(1993) has not been adopted
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here.
The consistent tangent operator expression above can
be symmetrized and utilized. While the symmetrized

consistent tangent operator is not precisely consistent

. with the Case 2 integration algorithm, it still gives much

better performance in nonlinear finite cbmputations than
the classical elasto-plastic continuum tangent operator. It
is proposed here. that the consistent tangent operator be

symmetrized as follows
=l Cm+(C ) (25)

3.3 Case 3: Consistent Tangent Operator

The symmetrical Case 3 consistent tangent operator is
computed as follows

8 v3 .,
~3 Ideu
1+2Qu+H) 751,
9K’F 7 51
1-9KF, 1754,

4y B BKE} 1
3 ( 1+22u+H) 7, )”"“ 1—9KF, 7,1

All7,s P2+ H) 9K(F)’
1+2Qu+H ¥y, 1—-9KF, 754,

[ 4u _ "__BI(F—’_ 1
® £ 1+2Qu+ H) 750 )”"“ Ll —9KF, AﬁﬁJ 1
A7, 11° Qe+ H). 9K(F,)*

1+2Qu+H) v 1-9KF, 74,

cons __ ~elastic
ntl — C -

+ 1®1

(26)
4. Example Computations

4 1 Hydrostatic Compression Test

This simple test is designed to show the pressure

versus volumetric strain behavior of the smooth cap

Table 4. Material parameters used in hydrostatic compression test

Material Parameter value
u 170.0 MPa
K 210.0 MPa
X, -1.0 KPa
a 3.86 KPa
6 | 0.21
D [ 1.2E-6 Pa’
W j 0.01
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Fig. 1 Hydrostatic compression test
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model. A single finite element in Fig. 1a is subjected to
a stress-controlled hydrostatic loading test, and the strain
response of the element is computed and displayed in
Fig. 1b. To demonstrate the rate of convergence achieved
with the consistent tangent operator expressions provided
in the previous section, the convergence behavior for a
single load-step during this test is shown in Fig. 1c, and
shows an asymtotically quadratic rate of convertgence.
The cap model material parameters used in this test are
listed in Table 4.

4.2 Four Element Limit Analysis Computation

While the preceding model demonstrated the perfor-
mance of the model under purely hydrostatic loading, this
simple four element test is designed to show the model's
performance under combined deviatric and compressive
loading. In this test computation, the loading shown on
the four element mesh (Fig. 2a) is increased until the
limit state of the model is found using methods obtained
in Swan and Seo(1999). The computed load-displacement
response of the model is shown in Fig. 2b, and the
material model parameters utilized are listed below in
Table 6. In this test which involved plastic loading at the
crown of the cap at limit state, very good convergence

behavior was achieved.

4.3 Slope Stability Analysis Computations

In these computations, an earthen slope model comprised

o —r= v v T a

w

I

Dhisplacement (m ’lD"‘;
ol

2

-’!»...__.a.__.u._.._;._.n.....a.__n_._,u_a__..r
g 20 S0 6h 8 00 20 160 180

(b) The computed load-deformation response provided by the
smooth cap model

Fig. 2 Four element limit analysis computation
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Table 5. Material parameters used in four element limit analysis test

Material Parameter value
“ 208.3 MPa
E 500.0 MPa
*, -100.0 kPa
a 12.3 kPa
0 0.2003
D 3.2E-7 Pa’’
w 0.15

Table 6. Sand~like material parameters used in slope stability

analysis
Parameter Value(Loose Sand) Value(Dense Sand)

) 1800 kg/m® 1800 kg/m®

u 1.2 GPa 1.2 GPa

E 3.0 GPa 3.0 GPa

Xo —500.0 KPa -1.0 kPa

a 30.0 Pa 30.0 Pa

/] 0.2 0.2

D 3.2E-8 Pa”' 3.2E-8 Pa”'

w 0.07 0.07

of a sandy soil is analyzed for stability using the methods
proposed in Swan and Seo(1999), which involved in-
creasing the gravitational loading on the slope model
until a failure mechanism develops, and the slope model
can take no further loading. The mesh used to model the
slope is shown in Fig. 3 and contains 1130 bilinear
continuum plane strain finite elements. The finite slope
shown has a height of 30m and a response angle of
29.98" . For a loose sandy soil and dense sandy soil
whose parameters are shown in Table 6, the computed
stability factors of safety for this model were 0.95 and
0.98, respectively.

5. Summary and Closure

A smooth, three-surface cap model has been presented

here along with sample computations which demonstrate
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Fig. 3 Mesh of 1130 bilinear continuum plane-strain finite ele-
ments used in slope stability analysis

its very good performance characteristics. The model
retains many of the positive physical attributes of preced-
ing non-smooth cap models, but avoids many of the
numerical difficulties associated with corner points in
those models: the numerical integration algorithms and
consistent tangent operator expressions. The rate of
convergence achieved in the sample implicit finite element
computations presented was typically asymptotically
quadratic.

Elasto-plastic cap models of the type presented here
are quite useful in modeling ductile soil behaviors. To
capture softening behaviors in porous media which are
also of considerable interest, cap models such as this one
can be straightforwardly coupled with continuum damage

mechanics models.
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