• 제목/요약/키워드: elasto-plastic time history analysis

검색결과 19건 처리시간 0.029초

Investigation of seismic responses of reactor vessel and internals for beyond-design basis earthquake using elasto-plastic time history analysis

  • Lee, Sang-Jeong;Lee, Eun-ho;Lee, Changkyun;Park, No-Cheol;Choi, Youngin;Oh, Changsik
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.988-1003
    • /
    • 2021
  • Existing elastic analysis methods cannot be adhered to in order to assess the structural integrity of a reactor vessel and internals for a beyond design basis earthquake. Elasto-plastic analysis methods are required, and the factors that affect the elasto-plastic behavior of reactor materials should be taken into account. In this study, a material behavior model was developed that considers the irradiation embrittlement effect, which affects the elasto-plastic behavior of the reactor material. This was used to perform the elasto-plastic time history analyses of the reactor vessel and its internals for beyond design basis earthquake. For this investigation, appropriate beyond design basis earthquakes and reliable finite element models were used. Based on the analysis results, consideration was given to the load reduction effect and the margin change. These were transferred to the internals due to the plastic deformation of the reactor vessel.

Elasto-plastic time history analysis of a 117-story high structure

  • Wu, Xiaohan;Li, Yimiao;Zhang, Yunlei
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.7-17
    • /
    • 2017
  • In Chinese Design Codes, for super high-rise buildings with complex structural distribution, which are regarded as code-exceeding buildings, elasto-plastic time history analysis is needed to validate the requirement of "no collapse under rare earthquake". In this paper, a 117-story super high-rise building is discussed. It has a height of 597 m and a height-width ratio of 9.5, which have both exceeded the limitations stipulated by the Chinese Design Codes. Mega columns adopted in this structure have cross section area of about $45m^2$ at the bottom, which is infrequent in practical projects. NosaCAD and Perform-3D, both widely used in nonlinear analyses, were chosen in this study, with which two model were established and analyzed, respectively. Elasto-plastic time history analysis was conducted to look into its seismic behavior, emphasizing on the stress state and deformation abilities under intensive seismic excitation.From the comparisons on the results under rare earthquake obtained from NosaCAD and Perform-3D, the overall responses such as roof displacement, inter story drift, base shear and damage pattern of the whole structure from each software show agreement to an extent. Besides, the deformation of the structure is below the limitation of the Chinese Codes, the time sequence and distribution of damages on core tubes are reasonable, and can dissipate certain inputted energy, which indicates that the structure can meet the requirement of "no collapse under rare earthquake".

Seismic performance evaluation and retrofitting with viscous fluid dampers of an existing bridge in Istanbul

  • Bayramoglu, Guliz;Ozgen, Alpay;Altinok, Enver
    • Structural Engineering and Mechanics
    • /
    • 제49권4호
    • /
    • pp.463-477
    • /
    • 2014
  • In this paper, seismic performance of Kozyatagi Bridge is evaluated by employing nonlinear elasto-plastic dynamic analysis and the deformation-based performance. The time-history records of the 1999 Izmit, 1971 San Fernando and 1989 Loma Prieta earthquakes are modified by adopting a probability of exceedance of 2% in 50 years corresponding to the return period of 2475 years. The analysis is carried out for three different bearing cases which are movable bearings, restrained bearings, and movable bearings with viscous fluid dampers in the radial direction. The analysis results show that the bridge can be retrofitted with viscous fluid dampers. In this case the reinforced concrete piers need not be strengthened by any jacketing techniques in order to preserve the original architectural appearance of the bridge. The retrofitting design of the bridge with viscous fluid dampers is also presented in detail.

충격하중을 받는 구조부재의 탄소성 파괴해석 프로그램 개발 (Development of Elastic-Plastic Fracture Analysis Program for Structural Elements under an Impact Loadings)

  • 김경수;박준범
    • 대한조선학회논문집
    • /
    • 제35권1호
    • /
    • pp.61-71
    • /
    • 1998
  • 본 논문에서는 2차원 공간에서의 탄성 또는 탄소성응력파를 받는 구조부재의 동적 파괴거동을 다룬다. 이러한 문제에 대한 지배방정식은 운동방정식과 탄소성 구성방정식에 대한 증감식으로 구성된 쌍곡선 편미분 방정식으로 나타나고, 이를 풀기 위해 유한차분법을 기초로 한 Zwas방법이 도입된다. 또한 탄소성문제의 동적거동을 나타내기 위해 응력공간내 탄소성 loading path가 소성항복 현상을 모델링하는데 제안된다. 이러한 계산결과를 바탕으로 탄성체의 균열선단의 동적응력확대계수가 계산되어지고, 탄소성체에 대한 소성영역의 형상의 시간이력을 보여준다.

  • PDF

탄소성 이력댐퍼를 적용한 초고층 건축물의 변위제어 (Drift Control of the Structure Using Elasto-Plastic Hysteretic Dampers in High Rise Buildings)

  • 박지형;박태원;김욱종;이도범
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.851-856
    • /
    • 2007
  • Recently, the matter controlling lateral drift is important in high rise buildings, In particular, seismic control dampers, such as mass damper and hysteretic damper, are emerging in the field of actively reducing drift. But. seismic control dampers have weak points with the lack of quantitative analysis and maintenance of the device. Accordingly, in this study we examine the structural characteristic of Steel Elasto-Plastic Hysteretic Damper, which is needless of maintenance, and then consider the basic conditions in the design and construction of the optimal seismic control effect which uses this device.

  • PDF

강성저감형 비탄성 단자유도 구조물에 설치된 완전탄소성 감쇠기의 제진성능 (Seismic Control of Stiffness-degrading Inelastic SDOF Structures with Fully Elasto-Plastic Dampers)

  • 박지훈;김훈희;김기면
    • 한국지진공학회논문집
    • /
    • 제14권4호
    • /
    • pp.37-48
    • /
    • 2010
  • 본 논문에서는 철근콘크리트 구조물과 같이 강성저감으로 인해 낮은 에너지 소산능력을 갖는 구조물의 제진성능을 비선형시간이력해석을 통해 조사하였다. 원구조물은 modified Takeda 이력모델을 갖는 단자유도시스템으로 이상화하였고, 완전탄소성 모델로 이력감쇠장치를 모델링하였다. 수치해석결과의 통계를 기초로 등가선형화에 의한 제진응답 평가의 적용성을 검증하였고, 제진보강 구조물의 응답예측을 위한 경험식을 제시하였다. 결과적으로 등가선형화를 통한 변위응답 평가보다는 본 연구에서 제시한 경험식을 이용하여 요구연성도를 추정하는 것이 더 정확하다. 경험식에서 얻어진 적정 감쇠기 항복강도는 완전탄소성시스템에 대한 최적 항복강도와는 상당한 차이를 가진다. 획득 가능한 연성도 저감효과는 원구조물의 고유주기가 짧을수록, 지진의 상대적 강도가 약할수록 우수한 것으로 나타났다.

요구스펙트럼의 비탄성이력특성 -완전탄소성모델을 중심으로- (Inelastic Hysteretic Characteristics of Demand Spectrum -Focused on Elasto Perfectly Plastic Model-)

  • 이현호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.367-374
    • /
    • 2000
  • This study investigates the effect of hysteretic characteristics to the Inelastic Demand Spectrum (IDS) which was expressed by an acceleration(Sa) and a displacement response spectrum (Sd). Elasto Perfectly Plastic(EPP) model is used in this study and inelastic demand spectrum (Sa vs, Sd) are obtained from a given target ductility ratio. For a given target ductility ratio IDS can be obtained by using nonlinear time history analysis of single degree of system with forth five recorded earthquake ground motions for stiff soil site. The effect EPP model under demand spectrum is investigated by ductility factor and natural frequency. According to the results obtained in this study IDS has dependency on ductility factor and natural frequency.

  • PDF

Elasto-plastic time history analysis of an asymmetrical twin-tower rigid-connected structure

  • Wu, Xiaohan;Sun, Yanfei;Rui, Mingzhuo;Yan, Min;Li, Lishu;Liu, Dongze
    • Computers and Concrete
    • /
    • 제12권2호
    • /
    • pp.211-228
    • /
    • 2013
  • The structure analyzed in this paper has particular building style and special structural system. It is a rigid-connected twin-tower skyscraper with asymmetrical distribution of stiffness and masses in two towers. Because of the different stiffness between the north and the south towers, the torsion seismic vibration is significant. In this paper, in order to study the seismic response of the structure under both frequent low-intensity earthquakes as well as rare earthquakes at the levels of intensity 7, the analysis model is built and analyzed with NosaCAD. NosaCAD is an nonlinear structure analysis software based on second-development of AutoCAD with ObjectARX. It has convenient modeling function, high computational efficiency and diversity post-processing functions. The deformations, forces and damages of the structure are investigated based on the analysis. According to the analysis, there is no damage on the structure under frequent earthquakes, and the structure has sufficient capacity and ductility to resist rare earthquakes. Therefore the structure can reach the goal of no damage under frequent earthquakes and no collapse under rare earthquakes. The deformation of the structure is below the limit in Chinese code. The time sequence and distribution of damages on tubes are reasonable, which can dissipate some dynamic energy. At last, according to forces, load-carrying capacity and damage of elements, there are some suggestions on increasing the reinforcement in the core tube at base and in stiffened stories.

열간가공의 변형에 미치는 곡률의 영향에 관한 연구 (Effect of Curvature on Deformation caused by Thermal Plate Forming)

  • 이주성
    • 한국해양공학회지
    • /
    • 제25권2호
    • /
    • pp.67-72
    • /
    • 2011
  • This study had the goal of investigating the effect of the curvature along the heating line on the transverse angular distortion of plates having an initial curvature from line heating. A thermo-elasto-plastic analysis was carried out using 54 models with various radii of curvature, plate thicknesses, and heating speeds. The results show the effect of the curvature along the heating line on the angular distortion in relation to changes in the magnitudes of the curvature, heating speed, and plate thickness. The present numerical results show that the time history of the angular distortion after cooling and reaching the final deformed shape for a plate having an initial curvature is quite different from that of a flat plate. This emphasized the importance of considering the curvature effect on the transverse angular distortion. From the viewpoint of the curvature effect on the deformation, it has been seen that the curvature does not affect the transverse shrinkage. In this study the predicting formula for the transverse angular distortion was derived through a regression analysis. It showed that as the curvature increased, the angular distortion was reduced because of the higher bending rigidity at the same heat input parameter, and the peak points moved toward the origin as the curvature increased.

Effect of hysteretic constitutive models on elasto-plastic seismic performance evaluation of steel arch bridges

  • Wang, Tong;Xie, Xu;Shen, Chi;Tang, Zhanzhan
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1089-1109
    • /
    • 2016
  • Modified two-surface model (M2SM) is one of the steel elasto-plastic hysteretic constitutive models that consider both analysis accuracy and efficiency. However, when M2SM is used for complex strain history, sometimes the results are irrational due to the limitation of stress-strain path judgment. In this paper, the defect of M2SM was re-modified by improving the judgment of stress-strain paths. The accuracy and applicability of the improved method were verified on both material and structural level. Based on this improvement, the nonlinear time-history analysis was carried out for a deck-through steel arch bridge with a 200 m-long span under the ground motions of Chi-Chi earthquake and Niigata earthquake. In the analysis, we compared the results obtained by hysteretic constitutive models of improved two-surface model (I2SM) presented in this paper, M2SM and the bilinear kinematic hardening model (BKHM). Results show that, although the analysis precision of displacement response of different steel hysteretic models differs little from each other, the stress-strain responses of the structure are affected by steel hysteretic models apparently. The difference between the stress-strain responses obtained by I2SM and M2SM cannot be neglected. In significantly damaged areas, BKHM gives smaller stress result and obviously different strain response compared with I2SM and M2SM, and tends to overestimate the effect of hysteretic energy dissipation. Moreover, at some position with severe damage, BKHM may underestimate the size of seismic damaged areas. Different steel hysteretic models also have influences on structural damage evaluation results based on deformation behavior and low cycle fatigue, and may lead to completely different judgment of failure, especially in severely damaged areas.