• 제목/요약/키워드: elasto-hydrodynamic lubrication

검색결과 22건 처리시간 0.022초

탄성유체 윤활상태와 접선하중을 고려한 접촉표면 내부의 응력해석 (Subsurface Stress Analysis with the Consideration of Tangential Loading and Elasto-Hydrodynamic Lubrication)

  • 구영필
    • Tribology and Lubricants
    • /
    • 제20권4호
    • /
    • pp.190-196
    • /
    • 2004
  • The effect of tangential loading on the subsurface stress field has been investigated numerically. As tangential load increases, the subsurface stress field expands more widely to the direction of the tangential load. Places of the maximum shear stress and the maximum effective stress are getting closer to the surface with the increasing tangential load. The tangential load in an elasto-hydrodynamic lubrication condition is so low that it does not affect the subsurface stress field.

모터링 시동 및 시동정지 사이클에서 경사진 축을 갖는 저어널베어링의 마모 해석 - Part II: 경사진 축을 지지하는 두 저어널베어링의 마모해석 (Wear Analysis of Journal Bearings Operating in a Shaft During Motoring Start-up and Coast-down Cycles - Part II: Wear Analysis of two Journal Bearings Supporting a Misaligned Shaft)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제33권4호
    • /
    • pp.168-186
    • /
    • 2017
  • This paper presents a wear analysis procedure for calculating the wear of journal bearings during the start-up and coast-down cycles of a motoring stripped-down single cylinder engine operating with a tilted shaft. In order to decide whether the lubrication state of a journal bearing is in the mixed-elasto-hydrodynamic lubrication regime, we utilize lift-off speed and MOFT (most oil film thickness) under mixed-elasto-hydrodynamic lubrication regime at the corresponding aligned shaft. We formulate an equation for the modified film thickness in a misaligned journal bearing considering the additional wear volume described in Part I of this study. For this, we use the calculation results of the degree of misalignment and tilting angle obtained after finding the eccentricities of the two bearings supporting the crankshaft of a single cylinder engine. In this Part II, we calculate the wear of journal bearings using the fractional film defect coefficient, the asperity load sharing factor, and the modified specific wear rate for the application of mixed-elasto-hydrodynamic lubrication regime. We show that the accumulated wear volume after turning the ignition switch on and off once, increases to ${\sigma}=39{\mu}m$ and then decreases from ${\sigma}=39{\mu}m$ with increasing in surface roughness.

상어표피 모사 리블렛 구조의 탄성유체윤활 해석 (Elasto-hydrodynamic Lubrication Analysis for Biomimetic Riblet Surface like Shark Skin)

  • 김태완
    • 동력기계공학회지
    • /
    • 제18권1호
    • /
    • pp.128-134
    • /
    • 2014
  • For the characteristic assessment of biomimetic shark skin structure pattern for engineering applications, we conducted the elastic hydrodynamic lubrication analysis for the shark skin surface pattern. The shark skin surfaces with roughness are generated numerically in the similar size with real shark skin scales. For the spherical contact on the generated shark skin surface with two different flow directions which are transversal and longitudinal, 3-dimensional elasto-hydrodynamic lubraction analysis are carried out. The result of the longitudinal flow which are similar with the flow of shark skin shows more beneficial effects with lower pressure and less sensitive effect with surface roughness.

탄성유체윤활 및 접선하중 상태에서 캠-롤러 접촉표면의 내부 응력장 (Subsurface stress field beneath the cam-roller contact surface under elastohydrodynamic lubrication and tangential loading)

  • 김형자;김영대;박경동;구영필
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.261-268
    • /
    • 2004
  • For cam and roller-follower contacting surfaces, the effect of tangential loading on the subsurface stress field at an elaso-hydrodynamic lubrication condition has been studied numerically. As tangential load increases, the subsurface stress field extended more widely to the direction of the tangential load. The positions of the maximum shear stress and the maximum effective stress are getting closer to the surface with the increasing tangential load. The tangential load at the elasto-hydrodynamic lubrication condition is of little consequence to the subsurface stress field.

  • PDF

범프포일베어링의 탄성유체윤활 특성 (Elasto-Hydrodynamic Lubrication Characteristics of Bump Foil Bearings)

  • 김영철;이동현;김경웅
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.98-103
    • /
    • 2004
  • This paper presents modeling and simulation of the bump foil bearings with consideration of the elastic behavior of the foil and gas compressibility. Heshmat had originally introduced the simple compliance model to estimate the EHL(elasto-hydrodynamic lubrication) performance. But this approach can not consider the deflection of top foil at the edge of bearing, so model is insufficient to analyze in case that the eccentricity ratio is greater than I. So the top foil is considered as a simple beam model supported by linear spring elements, and the bump foil deflection can be simple compliance model. The EHL calculations are performed for convention rigid type, classical foil type, variable pitch type and double bump type toil bearings. This paper presents that 2nd or 3rd generation bearings have excellent performance in every speeds.

  • PDF

회전헤드에 대한 주행테이프의 부상특성 ( I ) (Flying Characteristics of Running Tape above Rotating Head (I))

  • 민옥기;김수경
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.523-536
    • /
    • 1991
  • This dissertation analyzes the running mechanism of flexible and thin tape above rotating head through the numerical simulation and the experiment. The scope of analysis is confined to the phenomena of two dimensional elasto hydrodynamic lubrication between the protruded bump on a rotating cylinder and the running tape. This model is based on the elastic deformation equation of plate and shell and Reynolds equation. Finite difference method is employed as a numerical technique to calculate (1) the distribution of pressure between the running tape and rotating bump and (2) the vertical deformation of elastic thin tape over he rotating bump under hydrodynamic pressure. In numerical analyses, the effects of bump size on flying characteristics of the tape were evaluated and examined considering the influence of tension and stiffness of tape.

탄성유체윤활해석에 의한 연료 펌프 저널베어링 최적간극 선정 연구 (A Study on the Optimum Clearance Selection of Fuel Pump Journal Bearing with Elasto-hydrodynamic Lubrication Analysis)

  • 안성찬;이상돈;손정호;조용주
    • Tribology and Lubricants
    • /
    • 제33권1호
    • /
    • pp.23-30
    • /
    • 2017
  • The electric controlled marine diesel engine has fuel pump generating the high pressurized fuel for fuel injection to combustion chamber via a common rail. Fuel pump consists of a cam-roller system. Journal bearing installed between a roller and a cam-roller pin is subjected to fluctuating heavy and instant loads by cam lift. First, Kinematic analysis is carried out to predict bearing loads during one cycle acting on the journal bearing. Second, flexible multi-body dynamic analysis and transient elasto-hydrodynamic(EHD) lubrication analysis for journal bearing considering elastic deformation of cam-roller pin, roller and bearing are conducted using AVL EXCITE/PU software to predict lubrication performance. The clearance ratio and journal groove shape providing lubrication oil are important parameter in bearing design having good performance and can be changed easier than other design parameters such as diameter, width, oil supply pressure and bearing material grade. Generally, journal bearing performance is represented by the minimum oil film thickness(MOFT) and peak oil film pressure(POFP). As well as the traditional design parameters(MOFT, POFP), in this study, temperature rise of lubrication oil is also evaluated through the side leakage flow of supplied oil. By the evaluating MOFT, POFP and temperature rise, the optimum bearing clearance ratio is decided.

Transient EHL Analysis on Spur Gear Teeth with Consideration of Gear Kinematics

  • Koo, Young-Pil
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1319-1326
    • /
    • 2004
  • Transient 3-dimensional elasto-hydrodynamic lubrication (EHL) analysis is performed on the contacting teeth surfaces of involute spur gears. Kinematics of the gear and the pinion are taken into account to get accurate geometric clearance around the EHL region of the contacting teeth. The surface pressure and film thickness distribution for the whole contact faces in a lubricated condition at several time steps are obtained through the analysis. Besides the pressure spike at the outlet region, a representative phenomenon in EHL regime, the pressure at the inlet region is slightly higher than that of the center region. The film thickness of transient condition is thicker than that of steady condition.

캠과 롤러 종동자 기구의 접촉표면 순간온도 해석 (Flash Temperature Analysis on the Contact Surfaces between Cam and Roller-Follower Mechanism)

  • 구영필;김민남;김남식
    • 한국기계가공학회지
    • /
    • 제3권2호
    • /
    • pp.86-94
    • /
    • 2004
  • The flash temperature distribution on the contact surfaces between cam and roller-follower mechanism was analysed numerically. The elasto-hydrodynamic lubrication pressure and film thickness were used to get the accurate analysis results. The temperature distribution was obtained by numerical integration by making use of Carslaw and Jaeger's formulation to the whole contact surfaces. The maximum flash temperature was increased with both the increasing slip ratio of the contact surface and increasing external load Profile of the temperature distribution was affected by the sliding velocity of the surface.

  • PDF

스퍼 기어 접촉 치면의 내부응력 해석 (Sub-surface Stress Analysis beneath the Contact Surface of Spur Gear Teeth)

  • 이광진;김형자
    • 한국기계가공학회지
    • /
    • 제3권3호
    • /
    • pp.64-70
    • /
    • 2004
  • The sub-surface stress field beneath the spur gear's contact surface in lubricated condition has been analysed. The surface pressure was obtained by the elasto-hydrodynamic lubrication analysis using the accurate geometric clearances around the contact region of the teeth. The sub-surface stress field was calculated by using the Love's rectangular patch solution. The analysis results show that the sub-surface stress distribution is quite dependent on the surface pressure distribution. The pattern of sub-surface stress field is similar to that of the external load. The depth where the maximum effective stress occurs is not proportional to the intensity of the external load.

  • PDF