• Title/Summary/Keyword: elastic-plastic

Search Result 1,501, Processing Time 0.026 seconds

Engineering Estimation of Elastic-Plastic Fracture Parameter for Circumferential Surface Cracked Pipes: Part II (배관 원주방향 표면균열에 대한 탄소성 파괴 파라미터의 예측 (II))

  • Kim, Yun-Jae;Kim, Jin-Su;Kim, Young-Jin;Park, Yun-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.310-315
    • /
    • 2001
  • This paper provides validations of the reference stress based J and $C^*$ estimations, proposed in Part I, for inner, circumferential surface cracked pipes under internal pressure and global bending against detailed 3-D elastic-plastic and elastic-creep FE results. For this purpose, actual tensile properties of two typical stainless steels (TP304 and TP316) are used for elastic-plastic FE analyses and two realistic creep laws are used for elastic-creep FE analyses. For a total of twenty cases considered in this paper, agreements between the proposed reference stress based J and $C^*$ estimations and the FE results are excellent. More important aspect of the proposed estimations is that they can be used to estimate J and $C^*$ not only at the deepest point of the surface crack but also at an arbitrary point along the crack front.

  • PDF

Distribution of elastoplastic modulus of subgrade reaction for analysis of raft foundations

  • Rahgooy, Kamran;Bahmanpour, Amin;Derakhshandi, Mehdi;Bagherzadeh-Khalkhali, Ahad
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.89-105
    • /
    • 2022
  • The behavior of the soil subgrade is complex and irregular against loads. When modeling, the soil is often replaced by a more straightforward system called a subgrade model. The Winkler method of linear elastic springs is a popular method of soil modeling in which the spring constant shows the modulus of subgrade reaction. In this research, the factors affecting the distribution of the modulus of subgrade reaction of elastoplastic subgrades are examined. For this purpose, critical theories about the modulus of subgrade reaction were examined. A square raft foundation on a sandy soil subgrade with was analyzed at different internal friction angles and Young's modulus values using ABAQUS software. To accurately model the actual soil behavior, the elastic, perfectly plastic constitutive model was applied to investigate a foundation on discrete springs. In order to increase the accuracy of soil modeling, equations have been proposed for the distribution of the subgrade reaction modulus. The constitutive model of the springs is elastic, perfectly plastic. It was observed that the modulus of subgrade reaction under an elastic load decreased when moving from the corner to the center of the foundation. For the ultimate load, the modulus of subgrade reaction increased as it moved from the corner to the center of the foundation.

In situ horizontal stress effect on plastic zone around circular underground openings excavated in elastic zones

  • Komurlu, Eren;Kesimal, Ayhan;Hasanpour, Rohala
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.783-799
    • /
    • 2015
  • In this study, effect of horizontal in situ stress on failure mechanism around underground openings excavated in isotropic, elastic rock zones is investigated. For estimating the plastic zone occurrence, an induced stress influence area approach (Bray Equations) was modified to define critical stress ratio according to the Mohr-Coulomb failure criterion. Results obtained from modified calculations were compared with results of some other analytical solutions for plastic zone thickness estimation and the numerical modelling (finite difference method software, FLAC2D) study. Plastic zone and its geometry around tunnels were analyzed for different in situ stress conditions. The modified equations gave similar results with those obtained from the other approaches. However, safer results were calculated using the modified equations for high in situ stress conditions and excessive ratio of horizontal to vertical in situ stresses. As the outcome of this study, the modified equations are suggested to use for estimating the plastic zone occurrence and its thickness around the tunnels with circular cross-section.

A Study on the Measurement of Elastic-Plastic Zone at the Crack Tip under Cyclic Loading using ESPI System (전자스패클패턴 간섭시스템을 이용한 피로하중을 받는 균열선단에서 탄소성 영역 측정에 관한 연구)

  • 김경수;심천식
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.13-18
    • /
    • 2002
  • The magnitude of the plastic zone around the crack tip of DENT(Double Edge Notched Tension) specimen and the crack growth length under cyclic loading were measured by ESPI(Electronic Speckle Pattern Interferometry) system. The measured magnitude of plastic zone was compared with the equations proposed by Irwin and calculated by a nonlinear static method of MSC/NASTRAN. The measured crack growth length by ESPI system was also compared with the obtained data by the image analysis system. From the study, it is confirmed that the plastic zone and crack growth length can be measured accurately with the high-tech equipment.

Closed-Form Plastic Collapse Loads of Pipe Bends Under Combined Pressure and In-Plane Bending (압력과 모멘트의 복합하중을 받는 곡관의 소성 붕괴하중 예측식 개발)

  • Oh Chang-Sik;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.1008-1015
    • /
    • 2006
  • Based on three-dimensional (3-D) FE limit analyses, this paper provides plastic limit, collapse and instability load solutions for pipe bends under combined pressure and in-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic-perfectly plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide plastic collapse loads (using the twice-elastic-slope method) and instability loads. For the bending mode, both closing bending and opening bending are considered, and a wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and collapse load solutions for pipe bends under combined pressure and bending are proposed.

Plastic collapse of tapered, tip-loaded cantilevered beams

  • Wilson, James F.;El-Esnawy, Nayer A.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.569-588
    • /
    • 2000
  • The plastic collapse loads and their locations are predicted for a class of tapered, initially curved, and transversely corrugated cantilevered beams subjected to static tip loading. Results of both closed form and finite element solutions for several rigid perfectly plastic and elastic perfectly plastic beam models are evaluated. The governing equations are cast in nondimensional form for efficient studies of collapse load as it varies with beam geometry and the angle of the tip load. Static experiments for laboratory-scale configurations whose taper flared toward the tip, complemented the theory in that collapse occurred at points about 40% of the beams length from the fixed end. Experiments for low speed impact loading of these configurations showed that collapse occurred further from the fixed end, between the 61% and 71% points. The results may be applied to the design of safer highway guardrail terminal systems that collapse by design under vehicle impact.

Evaluation Model for Restraint Effect of Pressure Induced Bending on the Circumferential Through-Wall Crack Opening Considering Plastic Behavior (소성거동을 고려한 원주방향 관통균열 열림에 미치는 압력유기굽힘의 구속효과 평가 모델)

  • Kim, Jin-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1134-1141
    • /
    • 2006
  • This paper presents the model for evaluating restraint effect of pressure induced bending (PIB) on the circumferential through-wall crack opening displacement (COD), which considers plastic behavior of crack. This study performed three-dimensional elastic-plastic finite element (FE) analyses for different crack angle, restraint length, pipe geometry, stress level, and material conditions, and evaluated the influence of each parameter on the PIB restraint effect on COD. Based on these evaluations and additional perfectly-plastic FE analyses, a closed-form model to evaluate the restraint effect of PIB on the plastic crack opening of circumferential through-wall crack, was proposed as functions of crack angle, restraint length, radius to thickness ratio, axial stress corresponding to an internal pressure, and normalized COD evaluated from linear-elastic crack opening condition.

Study on the Computerization of Die Design for Bending Hook (후크 벤딩 금형 설계의 전산화에 관한 연구)

  • 조은정;정호승;정철우;조종래;최일동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.450-456
    • /
    • 2002
  • Die desig for manufacturing hooks from steel wires has been depended on empirical procedures based on trial and error method. To design die, at first the curvature and bending angle of hook are computed by using AutoCAD and developed program which is composed of Visual Basic. Then spring back should be considered because the elastic recovery of material is very important in bending process. In this study, bending analysis of elastic-plastic materials is applied to predict curvature of hook and spring back. Therefore, systematic procedure of die design for bending hook is achieved to consider elastic recovery in terms of hook shapes. Experimental results are good agreement with calculated results.

Simple solutions of an opening in elastic-brittle plastic rock mass by total strain and incremental approaches

  • Park, Kyungho
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.585-600
    • /
    • 2017
  • This study deals with simple solutions for a spherical or circular opening excavated in elastic-brittle plastic rock mass compatible with a linear Mohr-Coulomb (M-C) or a nonlinear Hoek-Brown (H-B) yield criterion. Based on total strain approach, the closed-form solutions of stresses and displacement are derived simultaneously for circular and spherical openings using original H-B and M-C yield criteria. Two simple numerical procedures are proposed for the solution of generalized H-B and M-C yield criteria. Based on incremental approach, the similarity solution is derived for circular and spherical openings using generalized H-B and M-C yield criteria. The classical Runge-Kutta method is used to integrate the first-order ordinary differential equations. Using three data sets for M-C and H-B models, the results of the radial displacements, the spreading of the plastic radius with decreasing pressure, and the radial and circumferential stresses in the plastic region are compared. Excellent agreement among the solutions is obtained for all cases of spherical and circular openings. The importance of the use of proper initial values in the similarity solution is discussed.

Thermal Elastic-Plastic Analysis of Strength Considering Temperature Rise due to Plastic Deformation by Dynamic Leading in Welded Joint (동적하중하에서의 용접이음부의 강도적특성에 대한 온도상승을 고려한 열탄소성 해석)

  • 안규백;망월정인;대전흉;방한서;농전정남
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.68-77
    • /
    • 2003
  • It is important to understand the characteristics of material strength and fracture under the dynamic loading like as earthquakes to assure the integrity of welded structures. The characteristics of dynamic strength and fracture in structural steels and their welded joints should be evaluated based on the effects of the strain rate and the service temperature. It is difficult to predict or measure temperature rise history with the corresponding stress-strain behavior. In particular, material behaviors beyond the uniform elongation can not be precisely evaluated, though the behavior at large strain region after the maximum loading point is much important for the evaluation of fracture. In this paper, the coupling phenomena of temperature and stress-strain fields under the dynamic loading was simulated by using the finite element method. The modified rate-temperature parameter was defined by accounting for the effect of temperature rise under the dynamic deformation, and it was applied to the fully-coupled analysis between heat conduction and thermal elastic-plastic behavior. Temperature rise and stress-strain behavior including complicated phenomena were studies after the maximum loading point in structural steels and their undermatched joints and compared with the measured values.