• 제목/요약/키워드: elastic width

검색결과 258건 처리시간 0.029초

Buckling behavior of strengthened perforated plates under shear loading

  • Cheng, Bin;Li, Chun
    • Steel and Composite Structures
    • /
    • 제13권4호
    • /
    • pp.367-382
    • /
    • 2012
  • This paper is dedicated to the buckling behaviors of strengthened perforated plates under edge shear loading, which is a typical load pattern of steel plates in civil engineering, especially in plate and box girders. The square plates considered each has a centric circular hole and is simply supported on four edges in the out-of-plane direction. Three types of strengthening stiffeners named ringed stiffener (RS), flat stiffener (FSA and FSB) and strip stiffener (SSA, SSB and SSC) are mainly discussed. The finite element method (FEM) has been employed to analyse the elastic and elasto-plastic buckling behavior of unstrengthened and strengthened perforated plates. Results show that most of the strengthened perforated plates behave higher buckling strengths than the unstrengthened ones, while the enhancements in elastic buckling stress and elasto-plastic ultimate strength are closely related to stiffener types as well as plate geometric parameters including plate slenderness ratio and hole diameter to plate width ratio. The critical slenderness ratios of shear loaded strengthened perforated plates, which determine the practical buckling pattern (i.e., elastic or elasto-plastic buckling) of the plates, are also studied. Based on the contrastive analyses of strengthening efficiency considering the influence of stiffener consumption, the most efficient cutout-strengthening methods for shear loaded perforated square plates with different slenderness ratios and circular hole diameter to plate width ratios are preliminarily identified.

Analytical and numerical investigation of the cyclic behavior of angled U-shape damper

  • Kambiz Cheraghi;Mehrzad TahamouliRoudsari
    • Steel and Composite Structures
    • /
    • 제51권3호
    • /
    • pp.325-335
    • /
    • 2024
  • Yielding dampers exhibit varying cyclic behavior based on their geometry. These dampers not only increase the energy dissipation of the structure but also increase the strength and stiffness of the structure. In this study, parametric investigations were carried out to explore the impact of angled U-shape damper (AUSD) dimensions on its cyclic behavior. Initially, the numerical model was calibrated using the experimental specimen. Subsequently, analytical equations were presented to calculate the yield strength and elastic stiffness, which agreed with the experimental results. The outcomes of the parametric studies encompassed ultimate strength, effective stiffness, energy dissipation, and equivalent viscous damper ratio (EVDR). These output parameters were compared with similar dampers. Also, the magnitude of the effect of damper dimensions on the results was investigated. The results of parametric studies showed that the yield strength is independent of the damper width. The length and thickness of the damper have the greatest effect on the elastic stiffness. Reducing length and width resulted in increased energy dissipation, effective stiffness, and ultimate strength. Damper width had a more significant effect on EVDR than its length. On average, every 5 mm increase in damper thickness resulted in a 3.6 times increase in energy dissipation, 3 times the effective stiffness, and 3 times the ultimate strength of the model. Every 15 mm reduction in damper width and length increased energy dissipation by 14% and 24%, respectively.

섬(Island) 구조로 이루어진 강성도 국부변환 신축성 기판의 변형 거동 (Deformation Behavior of Locally Stiffness-variant Stretchable Substrates Consisting of the Island Structure)

  • 오현아;박동현;신수진;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제22권4호
    • /
    • pp.117-123
    • /
    • 2015
  • 신축성 디바이스용 강성도 국부변환 기판기술을 개발하기 위해 강성도가 서로 다른 두 polydimethylsiloxane 탄성고분자를 사용하여 섬(island) 구조로 이루어진 강성도 국부변환 신축성 기판을 형성하고 변형 거동을 분석하였다. 기판 기지로는 탄성계수가 0.09 MPa인 Dragon Skin 10을 사용하였으며, 섬 구조의 강성도 국부변환부는 탄성계수가 2.15 MPa인 Sylgard 184를 사용하였다. 신축성 기판의 형상은 길이 6.5 cm, 두께 0.4 cm, 폭 2.5 cm 이었다. Dragon Skin 10 기지에 폭 1 cm, 길이 1~6 cm인 Sylgard 184의 삽입에 의해 신축성 기판의 탄성계수가 0.09 MPa에서 0.13~0.33 MPa로 증가하였다. 길이 4 cm, 폭 0.5~1.5 cm인 Sylgard 184 강성도 국부변환부를 내재시킴에 따라 신축성 기판의 탄성계수가 0.16~0.2 MPa로 증가하였으며, 길이 2 cm, 폭 0.5~1.5 cm인 강성도 국부변환부를 내재시킴에 따라 탄성계수가 0.142~0.154 MPa로 증가하였다. 신축성 기판의 변형률이 증가함에 따라 Sylgard 184와 Dragon Skin 10의 강도 차이가 현저히 증가하는데 기인하여 강성도 국부변환부의 변형억제 효과가 향상되었다.

판형 홀다운스프링 집합체의 탄성강성도 민감도 평가 (Evaluation of an elastic stiffness sensitivity of leaf type HDS)

  • 송기남
    • 대한기계학회논문집A
    • /
    • 제21권8호
    • /
    • pp.1276-1290
    • /
    • 1997
  • The previous elastic stiffness formulas of leaf type holddown spring assemblies(HDSs) have been corrected and extended to be able to consider the point of taper runout for the TT-HDS and all the strain energies for both the TT-HDS and the TW-HDS based on Euler beam theory and Castigliano'stheorem. The elastic stiffness sensitivity of the leaf type holddown spring assemblies was analyzed using the derived elastic stiffness formulas and their gradient vectors obtained from the mid-point formula. As a result of the sensitivity analysis, the elastic stiffness sensitivity at each design variable is quantified and design variables having remarkable sensitivity are identified. Among the design variables, leaf thickness is identified as that of having the most remarkable sensitivity of the elastic stiffness. In addition, it was found that the sensitivity of the leaf type HDS's elastic stiffness is exponentially correlated to the leaf thickness.

안경테 다리의 탄성변형에 관한 모델 (Model on the Elastic Deflection of Temple of the Spectacle Frame)

  • 김대수
    • 한국안광학회지
    • /
    • 제12권1호
    • /
    • pp.41-51
    • /
    • 2007
  • 두께 및 폭이 균일하지 않고 경사진 한 끝이 고정된 단면이 직사각형인 안경테 다리의 자유단에 수직 힘이 작용하는 경우 탄성체 내 모든 점에서 변위 및 접선 기울기의 연속, 구부림 모멘트의 연속, 전단력의 연속 등 법칙에 근거하여 이러한 불균일 안경테 다리의 변위를 이론적으로 구하는 방정식(모델)을 수립하였다. 베타티탄테 다리의 변형에 대한 실제 측정값과 유도한 이론식에 의한 예측 계산 값을 통계적으로 비교한 결과 상관계수 0.992 및 카이검정 결과 p=0.999로 서로 잘 부합되는 것을 알 수 있었다. 따라서 유도한 모델에 의해 다리의 탄성율 및 두께 폭과 같은 형상 변화에 따른 다리의 변형과 작용하는 힘(압력)의 크기 및 변화가 예측 가능하다. 안경테 다리의 두께 변화에 따른 다리 변형을 모사(simulation)하였다.

  • PDF

탄성체의 크기 변화에 따른 L1-B4형 초음파 리니어 모터의 구동 특성 (Driving Characteristic of L1-B4 Type Ultrasonic Linear Motor by Varying the Size of Elastic Material)

  • 김행식;박태곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.93-96
    • /
    • 2004
  • An ultrasonic linear motor was composed of a slider and a stator vibrator including piezoelectric material and elastic material. The ultrasonic linear motors mainly consist of an ultrasonic vibrator which generates elliptical oscillations. L1-B4 ultrasonic linear motor use longitudinal and bending multi-vibration. In order to design stators which has high efficiency and driving characteristics, The finite element method was used to optimize dimension of ultrasonic vibrator and direction of vibratory displacement. stator vibrator of respectively width 3, 5, 7[mm] was fabricated and experimented. as results When width was 5[mm], the driving characteristics was good.

  • PDF

폭이 변하는 Transversely Isotropic 판의 탄성좌굴 (Elastic Buckling of Transversely Isotropic Plate with Variable Width)

  • Yoon, S.J.;Jung, J.H.
    • Composites Research
    • /
    • 제15권5호
    • /
    • pp.35-43
    • /
    • 2002
  • 본 연구는 폭이 변하는 transversely isotropic 판에서 평행한 변에 서로 크기가 다른 면내 축방향 압축력이 작용하며, 경사진면에는 면내 전단력이 작용하는 경우 판의 탄성좌굴거동에 관한 해석적 연구결과이다. 폭이 변하는 등방성판의 좌굴해석을 위해 개발된 기존의 이론적 해를 확장하여 transversely isotropic 재료의 역학적 성질을 고려한 좌굴해석을 할 수 있도록 하였다. 이론식은 power series를 사용하여 유도하였으며, 유한요소해석을 부가적으로 수행하고 그 결과를 이론식을 사용한 해석결과와 비교, 검토하였다.

Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory

  • Park, Weon-Tae;Han, Sung-Cheon;Jung, Woo-Young;Lee, Won-Hong
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1239-1259
    • /
    • 2016
  • The modified couple stress-based third-order shear deformation theory is presented for sigmoid functionally graded materials (S-FGM) plates. The advantage of the modified couple stress theory is the involvement of only one material length scale parameter which causes to create symmetric couple stress tensor and to use it more easily. Analytical solution for dynamic instability analysis of S-FGM plates on elastic medium is investigated. The present models contain two-constituent material variation through the plate thickness. The equations of motion are derived from Hamilton's energy principle. The governing equations are then written in the form of Mathieu-Hill equations and then Bolotin's method is employed to determine the instability regions. The boundaries of the instability regions are represented in the dynamic load and excitation frequency plane. It is assumed that the elastic medium is modeled as Pasternak elastic medium. The effects of static and dynamic load, power law index, material length scale parameter, side-to-thickness ratio, and elastic medium parameter have been discussed. The width of the instability region for an S-FGM plate decreases with the decrease of material length scale parameter. The study is relevant to the dynamic simulation of micro structures embedded in elastic medium subjected to intense compression and tension.

Influence of sine material gradients on delamination in multilayered beams

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • 제8권1호
    • /
    • pp.1-17
    • /
    • 2019
  • The present paper deals with delamination fracture analyses of the multilayered functionally graded non-linear elastic Symmetric Split Beam (SSB) configurations. The material is functionally graded in both width and height directions in each layer. It is assumed that the material properties are distributed non-symmetrically with respect to the centroidal axes of the beam cross-section. Sine laws are used to describe the continuous variation of the material properties in the cross-sections of the layers. The delamination fracture is analyzed in terms of the strain energy release rate by considering the balance of the energy. A comparison with the J-integral is performed for verification. The solution derived is used for parametric analyses of the delamination fracture behavior of the multilayered functionally graded SSB in order to evaluate the effects of the sine gradients of the three material properties in the width and height directions of the layers and the location of the crack along the beam width on the strain energy release rate. The solution obtained is valid for two-dimensional functionally graded non-linear elastic SSB configurations which are made of an arbitrary number of lengthwise vertical layers. A delamination crack is located arbitrary between layers. Thus, the two crack arms have different widths. Besides, the layers have individual widths and material properties.

A method for effective beam widths of slabs in flat plate structures under gravity and lateral loads

  • Choi, Jung-Wook;Song, Jin-Gyu
    • Structural Engineering and Mechanics
    • /
    • 제21권4호
    • /
    • pp.451-468
    • /
    • 2005
  • Effective beam width models are commonly used to obtain the lateral stiffness of flat plate structures. In these models, an effective beam width is defined as the width when the flexural stiffness of the beam element equals the slab stiffness. In this present study, a method to obtain effective beam widths that considers the effects of connection geometry and slab cracking is analytically proposed. The rectangularity of the vertical member for the connection geometry and the combined effects of creep and shrinkage for the slab cracking are considered. The results from the proposed method are compared with experimental results from a test structure having nine slab-column connections.