• 제목/요약/키워드: elastic shear stress

검색결과 427건 처리시간 0.03초

계단시편의 간극이 단열전단밴드의 형성에 미치는 영향 (Effects of Clearance on the Formation of Adiabatic Shear Band in Stepped Specimen)

  • 유요한;전기영;정동택
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1700-1709
    • /
    • 1993
  • The stepped specimen which is subjected to step loading is modeled to study the initiation and growth of adiabatic shear band using explicit time integration finite element method. Three different clearance sizes are tested. The material model for the stepped specimen includes effects of strain hardening, strain rate hardening and thermal softening. It is found that the material inside the fully grown adiabatic shear band experiences three phase of deformation, (1) homogeneous deformation phase, (2) initiation/incubation phase, and (3) fast growth phase. The second phase of deformation is initiated after sudden shear stress drop which occurs at the same time regardless of the clearance size. The incubation time prior to fast growth phase increases, as the clearance size of the stepped specimen increases. Whereas, after incubation period, the growth rate of the adiabatic shear band decreases, as the clearance size decreases. It is also found that two adiabatic shear band may develop instead of one for the smaller clearance size.

혈류의 유동이 혈관-인조혈관 접속부 혈관 내막 세포증식에 미치는 영향 (Hemodynamic Effects on Artery-Graft Anastomotic Intimal Hyperplasia)

  • 이계한
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권2호
    • /
    • pp.143-150
    • /
    • 1994
  • Wall shear rate or stress is believed to be a major hemodynamic variable influencing atherosclerosis and artery-graft anastomic intimal hyperplasia. The purpose of this study is to verify the effects of radial wall motion, artery-graft compliance and diameter mismatch, and impedance phase angle on the wall shear rate distribution near an end-to-end artery-graft anastomosis model. The results show that radial wall motion of the elastic artery model lowers the mean wall shear rates under pulsatile flow condition by 15 to 20 % comparing to those under steady flow condition at the same mean flow rate. Impedance phase angle seems to have small effects on the mean and amplitude of the wall shear rate distribution. In order to study the effects of compliance and diameter mismatch on the wall shear rates, two models are studied-Model I has 6% and Model I has 6% and Model II has 11% smaller graft diameter. Divergent geometry caused by diameter mismatch near the distal sites reduces the mean wall shear rates significantly, and this low shear region is believed to be prone to intimal hyperplasia.

  • PDF

Stress analysis model for un-bonded umbilical cables

  • Chen, Xiqia;Fu, Shixiao;Song, Leijian;Zhong, Qian;Huang, Xiaoping
    • Ocean Systems Engineering
    • /
    • 제3권2호
    • /
    • pp.97-122
    • /
    • 2013
  • For the optimization design and strength evaluation of the umbilical cable, the calculation of cross section stress is of great importance and very time consuming. To calculate the cross section stress under combined tension and bending loads, a new integrated analytical model of umbilical cable is presented in this paper. Based on the Hook's law, the axial strain of helical components serves as the tensile stress. Considering the effects of friction between helical components, the bending stress is divided into elastic bending stress and friction stress. For the former, the elastic bending stress, the curvature of helical components is deduced; and for the latter, the shear stress before and after the slipping of helical components is determined. This new analytical model is validated by the experimental results of an umbilical cable. Further, this model is applied to estimate the extreme strength and fatigue life of the umbilical cable used in South China Sea.

직교이방성 평면탄성체의 응력확대계수 결정에 관한 연구 (A Study on the Determination of Stress Intensity Factors in Orthotropic Plane Elastic Bodies)

  • 진치섭;이홍주
    • 대한토목학회논문집
    • /
    • 제13권5호
    • /
    • pp.19-27
    • /
    • 1993
  • 파괴역학에서 최근의 연구들은 균열체의 강도를 해석함에 있어서 균열선단 주위의 탄성 에너지 해방용, 균열확장력 그리고 응력장의 특성 등에 대한 지식을 요구하고 있다. 이런 연구들의 주안점은 에너지율, 응력장 그리고 탄성이방성체의 여러가지 경우들을 설명하는 데 있다. 철근콘크리트, 목재, 박층구조 그리고 각각의 방향으로 성질을 가지는 탄성체들은 대부분 직교이방성이다. 본 연구에서는 균열선단에 특이요소를 사용하고 균열선단 부근에서 아주 세밀한 요소를 사용하여 직교이방성 탄성체의 응력확대계수를 결정 하였다. 본 연구에서 응력확대계수를 구하기 위해 변위상관법을 사용하였으며 타 논문의 결과와 잘 일치함을 알 수 있었다.

  • PDF

Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations

  • Merazka, Bouzid;Bouhadra, Abdelhakim;Menasria, Abderrahmane;Selim, Mahmoud M.;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad
    • Steel and Composite Structures
    • /
    • 제39권5호
    • /
    • pp.631-643
    • /
    • 2021
  • The aim of this work is to study the hygro-thermo-mechanical bending responses of simply supported FG plate resting on a Winkler-Pasternak elastic foundation. The effect transverse shear strains is taken into account in which the zero transverse shear stress condition on the top and bottom surfaces of the plate is ensured without using any shear correction factors. The developed model contains only four unknowns variable which is reduced compared to other HSDTs models. The material properties of FG-plate are supposed to vary across the thickness of the plate according to power-law mixture. The differential governing equations are derived based on the virtual working principle. Numerical outcomes of bending analysis of FG plates under hygro-thermo-mechanical loads are performed and compared with those available in the literature. The effects of the temperature, moisture concentration, elastic foundation parameters, shear deformation, geometrical parameters, and power-law-index on the dimensionless deflections, axial and transverse shear stresses of the FG-plate are presented and discussed.

슬립을 고려한 강합성 연속보의 장기거동해석 (Long-Term Behavior of Composite Continuous Beams With Flexible Shear Connectors)

  • 최동호;김호배;이동혁;고상은
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.141-149
    • /
    • 2000
  • This study performs the elastic and viscoelastic analysis of composite continuous beams with flexible shear connectors. Due to creep and shrinkage of the concrete part, the stress redistribution between the concrete slab and steel beam, and the evolution of the redundant restraint reaction occur with time. Using the equation of equilibrium, internal and external compatibility condition, and constitutive relationships, mathematical formulations are formulated. The solution is obtained by means of numerical step-by-step techniques and the finite difference method. Numerical parametric studies are performed to evaluate the stress redistribution, and the evolution of the redundant restraint reaction. The parameters include the stiffness and spacing of shear connectors, the age of concrete at loading, and the relative humidity.

  • PDF

탄성층 사이에 접합된 압전재료의 계면균열에 대한 전기-기계적 해석 (Electro-Mechanical Analysis of Interfacial Cracks in a Piezoelectric Layer Bonded to Dissimilar Elastic Layers)

  • 정경문;김인옥;김지숙;범현규
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.120-128
    • /
    • 2002
  • Interfacial cracks in a piezoelectric layer bonded to dissimilar elastic layers under the combined anti-plane mechanical shear and in-plane electrical leadings are considered. By using Fourier cosine transform, the mixed boundary value problem is reduced to a singular integral equation which is solved numerically to determine the stress intensity factors. Numerical results for the effects of the material properties and layer geometries on the stress intensity factors are obtained.

Finite Element Analysis of Multiple Subsurface Cracks in Half-space Due to Sliding Contact

  • Lee, Sang Yun;Kim, Seock Sam
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.12-16
    • /
    • 2001
  • A finite element analysis of crack propagation in a half-space due to sliding contact was performed. The sliding contact was simulated by a rigid asperity moving across the surface of an elastic half-surface containing single and multiple cracks. Single, coplanar, and parallel cracks were modeled to investigate the interaction effects on the crack growth in contact fatigue. The analysis was based on linear elastic fracture mechanics and the stress intensity factor concept. The crack propagation direction was predicted based on the maximum range of the shear and tensile stress intensity factors.

  • PDF

강제라멘교각 접합부의 응력평가법 (Stress Evaluation Procedure for Connection of Steel Frame Pier)

  • 황원섭;김영필
    • 한국강구조학회 논문집
    • /
    • 제10권3호통권36호
    • /
    • pp.327-338
    • /
    • 1998
  • 본 연구는 강제라멘교각 접합부의 탄성거동에 대하여 검토한 것이다. 여기에서는 접합부 시험체의 실험결과와 FEM해석모델에 대한 결과를 비교하였다. 이와 같은 해석 및 실험결과를 비교 검토한 결과, 접합부 panel zone에서의 전단응력분포는 단면적비$(A_f/A_w)$에 따라 변화한다는 것과 전단지연(shear lag)현상에 의하여 플랜지에 발생하는 부가응력 또한 기존의 제안식과 현저한 차이가 있음을 알 수 있었다. 따라서 본 연구에서는 이상의 실험 및 해석결과를 기초로하여 접합부의 설계변수의 영향을 고려한 panel zone과 플랜지의 응력평가방법을 제안하였다.

  • PDF

변형량 기울기 이론이 조합된 이중후방응력 경화모델에서의 국부적 소성변형 (Localized Plastic Deformation in Plastic Strain Gradient Incorporated Combined Two-Back Stress Hardening Model)

  • 윤수진;이상연;박동창
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.528-535
    • /
    • 2011
  • 본 논문에서는 변형율 독립 탄-소성 구성방정식을 이용, 전단 변형 하에서의 국부적 소성변형 집중현상이 분석되었다. 또한 변형량 기울기 (strain gradient) 항이 포함된 비구역적 (non-local) 구성방정식이 유도되었으며 이는 다시 이중후방응력 경화 모델로 표현되었다. 더욱이 본 모델은 연속체 파손역학과 조합되었다. 국부적 변형집중 현상은 수치해석을 통해 분석되었으며 변형량 기울기 항이 구성방정식에 포함될 때 본 항의 크기가 증가할수록 전단 밴드의 크기는 감소하는 것으로 밝혀졌다.

  • PDF