• Title/Summary/Keyword: elastic shape

Search Result 751, Processing Time 0.022 seconds

A Shape Finding and Cutting Pattern Determination for Membrane Structures (막 구조물에 관한 형상 탐색과 재단도 결정법)

  • Choi, Ho;Lee, Jang-Bog;Kim, Jae-Yeol;Sur, Sam-Uel;Kwon, Taek-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.175-182
    • /
    • 1998
  • The object of this study is shape finding and cutting pattern generation of membrane structures under the following assumptions : (1) material is linearly elastic (2) stress state is plane stress. Cable and membrane structures should introduce the nonlinear analysis considering geometric nonlinearity because these structures deform largely under the external loads. The analysis procedure is consisted of three steps considering geometric nonlinearity unlike any other structures. First step is the shape finding analysis to determine the initial equilibrium shape. Second step is the stress-deformation analysis to investigate the behaviors of structures under various external loads. Once a satisfactory shape has been found, a cutting pattern based on the shape finding analysis may be generated from the view point of construction. In this paper, (1) shape finding analysis formulation and an example, (2) cutting pattern determination procedure using weighted least-square minimization flattening method and some results are presented.

  • PDF

Lambda shape multiway moving ultrasonic linear motor (람다형 다방향 초음파 선형 모터)

  • Do, Young-Soo;Nam, Hyo-Duk;Kim, Young-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.263-265
    • /
    • 2007
  • An ultrasonic linear motor using lambda shape vibrators has been designed and fabricated. The multiway ultrasonic motors mainly consist of an lambda shape ultrasonic vibrator which generates elliptical motions in beat. The lambda shape ultrasonic linear motor use longitudinal and bending vibration mode. In order to high precision motion control and multiway moving, piezoceramics were adhered to lambda shape brass elastic material. The finite element method was used to optimize dimension of ultrasonic vibrator and direction of vibratory displacement. As a result of estimating the characteristics of the ultrasonic linear motor, The results have shown that the lambda shape ultrasonic linear motor can be moved multiwav by using the phase control. Close agreement between the FEM results and experimental results obtained for the lambda shape ultrasonic linear motor.

  • PDF

Influence of SMAs on the attenuation of effects of P-Δ type in shear frames

  • Corbi, Ottavia
    • Steel and Composite Structures
    • /
    • v.3 no.6
    • /
    • pp.403-420
    • /
    • 2003
  • In the paper one investigates the benefits deriving from the introduction of SMA provisions in a structure subject to dynamic excitation and vertical loads. At this purpose one considers a multi-degree-of-freedom (mdof) shear elastic-plastic frame and designs couples of super-elastic SMA tendons to be placed at critical locations of the structure. Particular attention is focused on the reduction of $P-{\Delta}$ effects.

An analysis of progressing buckles of thin compressed beam with contact treatment (접촉을 고려한 보의 탄소성 좌굴진행 해석)

  • 김종봉;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.28-31
    • /
    • 1997
  • Buckling analysis of thin compressed beam has been carried out. Pre-buckling and post-buckling are simulated by finite element method incorporating with the incremental nonlinear theory and the Newton-Raphson solution technique. In order to find the bifurcation point, the determinent of the stiffness matrix is calculated at every iteration procedure. For post-buckling analysis, a small perturbed initial guess is given along the eigenvector direction at the bifurcation point. Nonlinear elastic buckling and elastic-plastic buckling of cantilever beam are analyzed. The buckling load and buckled shape of the two models are compared.

  • PDF

Sensitivity Analysis of Linear Elastic Problem due to Variations of the Traction Boundary Conditions (하중경계조건의 변화에 대한 선형탄성문제의 민감도 해석)

  • 이태원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1852-1860
    • /
    • 1991
  • A shape design sensitivity of the elastic deformation due to a change of traction boundary condition is presented. The solution of governing equations for a linear elasticity problem is obtained by finite element method and the traction boundary is defined by design variables. The performance functional to be considered involves both the domain and boundary integral. Variations of geometry can be defined as design velocity. Using material derivative concept and adjoint equations, the design sensitivity is derived by Lagrange multiplier method. For a given geometry of a structure, the change of traction boundary is described by the tangential component of the design velocity only. The final result for the shape design sensitivity is formulated as the boundary integral form, the integrand is defined by tangential component of design velocity and first order derivatives of parameters. Numerical implementation of design sensitivity is discussed and is compared with the difference of the actual values.

Effect of the boundary shape of weld specimen on the stress distribution (용접시편의 테두리 모양이 응력 분포에 미치는 영향)

  • Yang, Seung-Yong;Goo, Byeong-Choon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.348-352
    • /
    • 2004
  • In finite element analysis of mechanical behavior of weld, typical process is first to obtain a finite element model containing residual stress by conducting welding analysis and then to examine the computational specimen for various external loading. The numerical specimen with residual stress has irregular boundary lines since one usually begins the welding analysis from a body having regular straight boundary lines and large thermal contraction takes place during cooling of weld metal. We notice that these numerical weld specimens are different from the real weld specimens as the real specimens are usually cut from a bigger weld part and consequently have straight boundaries neglecting elastic relaxation associated with the cutting. In this paper, an iterative finite element method is described to obtain a weld specimen which is bounded by straight lines. The stress distributions of two types of weld specimen, one with regular and the other with irregular boundaries, are compared to check the effect of the boundary shape. Results show that the stress distribution can be different when large plastic deformation is induced by the application of external loading. In case of elastic small deformation, the difference turns out almost negligible.

  • PDF

A Construction of Aerodynamic Force Measurement System for Wind Tunnel Test of Yacht Sail and Aerodynamic Forces Measurement of Model Sail (요트세일의 풍동시험을 위한 공력 계측시스템 구축과 모형세일의 공력 계측)

  • Kim, Choul-Hee;Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.445-450
    • /
    • 2011
  • In order to estimate a yacht sail performance, measuring system of aerodynamic forces acting on the yacht sail is constructed and experiments of flexible model sail are carried out at the medium-size subsonic wind tunnel of Chungnam National University. Experimental results for a flexible sail are compared with experimental and numerical results of fixed shape sail. In case of a fixed shape sail, lift and drag coefficients are rarely changed at all velocity conditions. However, those of the flexible sail are decreased as the incoming velocity is increased. These are understandably resulted from shape variations due to the flexible material. Therefore aero-elastic similarity should be more carefully considered in the model test rather than other similarities.

LASER WELDING OF TI-NI SHAPE MEMORY ALLOY WIRE

  • Kim, Young-Sik;Kim, Jong-Do
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.139-144
    • /
    • 2002
  • Ti-50.9at%Ni wires were welded using pulsed YAG laser. The laser welded wires were tested for investigating the shape memo교 effect and the ability of super elasticity. The fatigue properties of the welded wires were investigated using the rotary bending fatigue tester specially designed for wires. Moreover, the effect of defocusing distance during laser welding on the static and fatigue properties was investigated. The shape memory effect and super elasticity of the laser welded wires were approximately identical with that of base metal at the test temperature below 353K. However, the welded wires were broken within elastic limit at the test temperature above 353k. Under the cyclic bending loading conditions, the welded wires could be useful only below the elastic limit, while the base metal had sufficient fatigue life even the stress induced M-phase region. The fatigue strength of the welded wires was about half of that of the base metal. The deterioration of the static and fatigue properties in the welded wires was proven to be from the large difference of the transformation behavior between the base metal and welded part that is caused by vaporization of Ni-content at the welded part during the welding process. The defocusing distance below 3mm acted more largely on lowering the strength of the welded wires than that of 6mm or 8mm.

  • PDF

Stress Analysis of Linear Elastic Solid Problems by using Enhanced Meshfree Method based on Fast Derivatives Approximation (고속 도함수 근사화에 의해 개선된 무요소법을 이용한 선형탄성 고체문제의 응력해석)

  • 이상호;김효진;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.583-590
    • /
    • 2002
  • Point collocation method based on the fast derivatives approximation of meshfree shape function is applied to solid mechanics in this study. Enhanced meshfree approximation with approximated derivative of shape function is reviewed, and formulation of linear elastic solid mechanics by point collocation method is presented. It implies that governing equation of solid mechanics with strong form is directly formulated without no numerical integration cells or grid. The regularity of weight function is not required due to a use of approximated derivative, so we propose the exponential type weight function that is discontinuous in first derivative. The convergence and stability of the proposed method is verified by passing the generalized patch test. Also, the efficiency and applicability of the proposed method in solid mechanics is verified by solving types of solid problems. Numerical results show that not only a use of proposed weight function leads lower error and higher convergence rate than that of the conventional weight functions, but also the improved collocation method with derivative approximation enables to compute the derivatives of shape function very fast and accurately enough to replace the classical direct derivative calculation.

  • PDF

Earthquake effect on the concrete walls with shape memory alloy reinforcement

  • Beiraghi, Hamid
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.491-506
    • /
    • 2019
  • Literature regarding concrete walls reinforced by super elastic shape memory alloy (SMA) bars is rather limited. The seismic behavior of a system concurrently including a distinct steel reinforced concrete (RC) wall, as well as another wall reinforced by super elastic SMA at the first story, and steel rebar at upper stories, would be an interesting matter. In this paper, the seismic response of such a COMBINED system is compared to a conventional system with steel RC concrete walls (STEEL-Rein.) and also to a wall system with SMA rebar at the first story and steel rebar at other stories ( SMA-Rein.). Nonlinear time history analysis at maximum considered earthquake (MCE) and design bases earthquake (DBE) levels is conducted and the main responses like maximum inter-story drift ratio and residual inter-story drift ratio are investigated. Furthermore, incremental dynamic analysis is used to accomplish probabilistic seismic studies by creating fragility curves. Results demonstrated that the SMA-Rein. system, subjected to DBE and MCE ground motions, has almost zero and 0.27% residual maximum inter-story drifts, while the values for the COMBINED system are 0.25% and 0.51%. Furthermore, fragility curves show that using SMA rebar at the base of all walls causes a larger probability of exceedance 3% inter-story drift limit state compared to the COMBINED system. Static push over analysis demonstrated that the strength of the COMBINED model is almost 0.35% larger than that of the two other models, and its general post-yielding stiffness is also approximately twice the corresponding stiffness of the two other models.