• Title/Summary/Keyword: elastic shape

Search Result 751, Processing Time 0.025 seconds

Vibration of elastic and viscoelastic multilayered spaces

  • Karasudhi, P.;Liu, Y.C.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.103-118
    • /
    • 1993
  • The near field is discretized into finite elements, and the far field into infinite elements. Closed form far-field solutions to three fundamental problems are used as the shape functions of the infinite elements. Such infinite elements are capable of transmitting all surface and body waves. An efficient scheme to integrate numerically the stiffness and mass matrices of these elements in presented. Results agree closely with those obtained by others.

Thermoelastic Properties of Porous Metals After Material Forming Processes (다공성 금속의 성형공정 후 열탄성 계수)

  • 이종원;김진원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.217-220
    • /
    • 2003
  • The effective thermoelastic properties of porous metals are discussed herein after each material forming process such as hot pressing or extrusion. The voids in metal matrix are assumed to be initially spherical in shape and to be distributed randomly. Once the porous material deforms plastically due to each material forming process, the voids change their shape from a sphere to an ellipsoid and align in one direction. Since the voids are compressible in nature, the void volume fraction is assumed to be decreasing during each material forming process.

  • PDF

Numerical Simulation of Fatigue Growth of Multiple Surface Crack under Fatigue Load (피로 하중하에서의 복수표면크랙진전에 관한 수치시뮬레이션)

  • 한문식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.133-141
    • /
    • 2002
  • This paper describes a versatile finite element technique which has been used to investigate wide range of structural defects of practical importance. The procedure automatically remeshes the three-dimensional finite element model during the stages of crack growth. Problems include the surface cracks in leak-before-break situations, the shape development of multiple surface defects.

The Effect of Mechanical Properties of Polishing Pads on Oxide CMP ( Chemical Mechanical Planarization )

  • Hong, Yi-Koan;Eom, Dae-Hong;Kang, Young-Jae;Park, Jin-Goo;Kim, Jae-Suk;Kim, Geon;Lee, Ju-Yeol;Park, In-Ha
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.445-446
    • /
    • 2002
  • The purpose of this study was to investigate the effect of micro holes, pattern structure and elastic modulus of pads on the polishing behavior such as the removal rate and WIWNU (within wafer non-uniformity) during CMP. The regular holes on the pad act as the superior abrasive particle's reservoir and regular distributor at the bulk pad, respectively. The superior CMP performance was observed at the laser processed bulk pad with holes. Also, th ε groove pattern shape was very important for the effective polishing. Wave grooved pad showed higher removal rates than K-grooved pad. The removal rate was linearly increased as the top pad's elastic modulus increased.

  • PDF

Face Recognition using Karhunen-Loeve projection and Elastic Graph Matching (Karhunen-Loeve 근사 방법과 Elastic Graph Matching을 병합한 얼굴 인식)

  • 이형지;이완수;정재호
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.231-234
    • /
    • 2001
  • This paper proposes a face recognition technique that effectively combines elastic graph matching (EGM) and Fisherface algorithm. EGM as one of dynamic lint architecture uses not only face-shape but also the gray information of image, and Fisherface algorithm as a class specific method is robust about variations such as lighting direction and facial expression. In the proposed face recognition adopting the above two methods, the linear projection per node of an image graph reduces dimensionality of labeled graph vector and provides a feature space to be used effectively for the classification. In comparison with a conventional method, the proposed approach could obtain satisfactory results in the perspectives of recognition rates and speeds. Especially, we could get maximum recognition rate of 99.3% by leaving-one-out method for the experiments with the Yale Face Databases.

  • PDF

Dynamic Analysis of Space Frameworks on the Elastic soil (탄성 지반상에 놓인 3차원 골조구조물의 동적해석)

  • 장병순;서상근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.37-44
    • /
    • 1996
  • When a load such as the mechanical load, the wind load, and the seismic load causing a vibration, acts on the body of the 3-D frameworks with slab, it is required to consider the dynamic behavior of elastic soil as well as that of 3-D structure in the structural analysis. Thus, this study presents the analysis of dynamic behavior using finite element method that is formulated by using a model of the 3-D structure. For the idealization of the actual structure closely into a geometric shape, plate is subdivided into 4-node plate element with the flexibility, beam-column is subdivided into 2-node beam element, and elastic soil is subdivided into 8-node brick element.

  • PDF

A Study on the Thermal Stress Analysis of Axi-Symmetric Hollow Cylinder (축대칭 중공실린더의 길이방향 온도분포하의 열탄성응력 해석에 관한 연구)

  • Lee, Sang-Jin;Cho, Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3152-3159
    • /
    • 1996
  • Previous works about the cylindrical shape elastic body which is under longitudinal temperature distribution mostly show the results of free expansion, therefore exact thermo-elastic analysis is needed. The object of this work is to analyze the thermo-elastic problem of the hollow cylinder when the cylinder is under longitudinal temperature distribution. In this paper, the analytical solution is found by using Galerkin vector, and it is compared by the results of FEM. For displacements of cylinder, analytical values are almost same as the results of FEM, but free expansion is not fit for analytical solution and the results of FEM. stresses from analytical solution and the results of FEM show good agreement also. but the results are different near the end boundary, since St. Venant principle is applied.

Holographic Microscopy Measurement of Inertia Migration Phenomena of Phytoplankton in Pipe Flows (식물성 플랑크톤의 관유동 내 횡방향 이동현상에 대한 홀로그래픽 실험 연구)

  • Lim, Seung Min;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.3
    • /
    • pp.11-15
    • /
    • 2012
  • Inertial migration phenomena of phytoplankton in pipe flows were investigated using a digital holography technique. As the Reynolds number increases, the microorganisms suspended in a pipe flow are focused at a certain radial position which is called equilibrium position or pinch point. In this study, the effects of the size of microorganism and Reynolds number in the range of 1 < Re < 78 on the inertial migration were investigated and the results are compared with those for solid particles under similar experimental conditions. As a result, the equilibrium position for the elastic microorganisms is not so distinct, compared to the solid particles. This results from deformation of elastic body shape caused by shear-gradient of surrounding flow.

Stress Analysis of a Tension Sensor with a Rubber Housing for a Fence Intrusion Detection System (고무하우징을 갖는 장력센서의 변형거동 해석)

  • Lee, Hyoung-Wook;Jang, Kwang-Keol;Huh, Hoon;Kang, Dae-Im
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.698-703
    • /
    • 2001
  • This paper is concerned with the nonlinear hyperelastic problem fur the incompressible characteristics of the rubber. Tension sensor is a strain gage type load cell element for a fence intrusion detection system and consists of the sensing part and the rubber housing. The analysis includes an elastic analysis and a hyperelastic analysis of a tension sensor for the deformed shape and variation of the maximum strain on the sensing part with respect to the vertical load. Numerical results show that the hyperelastic model is stiffer and less deformed than the elastic model. Comparing with the experimental test data, we know the hyperelastic model is the better approximation than the elastic model.

  • PDF

A new formulation of the J integral of bonded composite repair in aircraft structures

  • Serier, Nassim;Mechab, Belaid;Mhamdia, Rachid;Serier, Boualem
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.745-755
    • /
    • 2016
  • A three-dimensional finite element method is used for analysis of repairing cracks in plates with bonded composite patch in elastic and elastic plastic analysis. This study was performed in order to establish an analytical model of the J-integral for repair crack. This formulation of the J-integral to establish models of fatigue crack growth in repairing aircraft structures. The model was developed by interpolation of numerical results. The obtained results were compared with those calculated with the finite element method. It was found that our model gives a good agreement of the J-integral. The arrow shape reduces the J integral at the crack tip, which improves the repair efficiency.