• 제목/요약/키워드: elastic properties

검색결과 2,367건 처리시간 0.032초

MEMS 부품을 위한 다결정 박막의 탄성 물성치 추출 시스템과 다결정 재료의 적용 (Elastic Property Extraction System of Polycrystalline Thin-Films for Micro-Electro-Mechanical System Device and Application to Polycrystalline Materials)

  • 정향남;최재환;정희택;이준기
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.19-22
    • /
    • 2004
  • A numerical system to extract effective elastic properties of polycrystalline thin-films for MEMS devices is already developed. In this system, the statistical model based on lattice system is used for modeling the microstructure evolution simulation and the key kinetics parameters of given micrograph, grain distributions and deposition process can be extracted by inverse method proposed in the system. In this work, the effective elastic properties of polysilicon, $BaTiO_3\;and\;ZrTiO_4$ are extracted using this system and by employing the fraction of the potential site($f_P$) as a kinetics parameter for the microstructure evolution, the statistical tendency of these materials is studied.

  • PDF

The Elastic Moduli and Fatigue Properties of Canine Trabecular Bone Tissue

  • Park, Kuiwon;Gon Khang;Steven A. Goldstein
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.1022-1031
    • /
    • 2001
  • The elastic modulus and fatigue properties of canine and human trabecular bone tissues (single trabecular) were experimentally determined on a microstructural level using four-point bending cyclic test, and they were compared based on microstructural characteristics and mineral density. The results showed that canine trabecular bone tissue had significantly lower modulus and lower fatigue strength than human tissue. The observed microstructural differences between the two tissues may be more responsible for the differences, although the lower mineral density in canine tissue might also have contributed to the lower modulus and fatigue strength.

  • PDF

Performances of non-dissipative structure-dependent integration methods

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • 제65권1호
    • /
    • pp.91-98
    • /
    • 2018
  • Three structure-dependent integration methods with no numerical dissipation have been successfully developed for time integration. Although these three integration methods generally have the same numerical properties, such as unconditional stability, second-order accuracy, explicit formulation, no overshoot and no numerical damping, there still exist some different numerical properties. It is found that TLM can only have unconditional stability for linear elastic and stiffness softening systems for zero viscous damping while for nonzero viscous damping it only has unconditional stability for linear elastic systems. Whereas, both CEM and CRM can have unconditional stability for linear elastic and stiffness softening systems for both zero and nonzero viscous damping. However, the most significantly different property among the three integration methods is a weak instability. In fact, both CRM and TLM have a weak instability, which will lead to an adverse overshoot or even a numerical instability in the high frequency responses to nonzero initial conditions. Whereas, CEM possesses no such an adverse weak instability. As a result, the performance of CEM is much better than for CRM and TLM. Notice that a weak instability property of CRM and TLM might severely limit its practical applications.

Magneto-thermo-elastic response of exponentially graded piezoelectric hollow spheres

  • Allam, M.N.M.;Tantawy, R.;Zenkour, A.M.
    • Advances in Computational Design
    • /
    • 제3권3호
    • /
    • pp.303-318
    • /
    • 2018
  • This article presents a semi-analytical solution for an exponentially graded piezoelectric hollow sphere. The sphere interacts with electric displacement, elastic deformations, electric potentials, magneto-thermo-elasticity, and hygrothermal influences. The hollow sphere may be standing under both mechanical and electric potentials. Electro-magneto-elastic behavior of magnetic field vector can be described in the hollow sphere. All material, thermal and magnetic properties of hollow sphere are supposed to be graded in radial direction. A semi-analytical technique is improved to deduce all fields in which different boundary conditions for radial stress and electric potential are presented. Numerical examples for radial displacement, radial and hoop stresses, and electric potential are investigated. The influence of many parameters is studied. It is seen that the gradation of all material, thermal and magnetic properties has particular effectiveness in many applications of modern technology.

순 아르콘 캐리어 가스와 APCVD로 성장된 다결정 3C-SiC 박막의 기계적 특성 (Mechanical characteristics of polycrystalline 3C-SiC thin films using Ar carrier gas by APCVD)

  • 한기봉;정귀상
    • 센서학회지
    • /
    • 제16권4호
    • /
    • pp.319-323
    • /
    • 2007
  • This paper describes the mechanical characteristics of poly 3C-SiC thin films grown on Si wafers with thermal oxide. In this work, the poly 3C-SiC thin film was deposited by APCVD method using only Ar carrier gas and single precursor HMDS at $1100^{\circ}C$. The elastic modulus and hardness of poly 3C-SiC thin films were measured using nanoindentation. Also, the roughness of surface was investigated by AFM. The resulting values of elastic modulus E, hardness H and the roughness of the poly 3C-SiC film are 305 GPa, 26 GPa and 49.35 nm respectively. The mechanical properties of the grown poly 3C-SiC film are better than bulk Si wafers. Therefore, the poly 3C-SiC thin film is suitable for abrasion, high frequency and MEMS applications.

Closed-form Green's functions for transversely isotropic bi-solids with a slipping interface

  • Yue, Zhong Qi
    • Structural Engineering and Mechanics
    • /
    • 제4권5호
    • /
    • pp.469-484
    • /
    • 1996
  • Green's functions are obtained in exact closed-forms for the elastic fields in bi-material elastic solids with slipping interface and differing transversely isotropic properties induced by concentrated point and ring force vectors. For the concentrated point force vector, the Green functions are expressed in terms of elementary harmonic functions. For the concentrated ring force vector, the Green functions are expressed in terms of the complete elliptic integral. Numerical results are presented to illustrate the effect of anisotropic bi-material properties on the transmission of normal contact stress and the discontinuity of lateral displacements at the slipping interface. The closed-form Green's functions are systematically presented in matrix forms which can be easily implemented in numerical schemes such as boundary element methods to solve elastic problems in computational mechanics.

재생골재 콘크리트의 역학적 특성 (Mechanical Properties of Recycled Aggregate Concrete)

  • 최명신;신성우;이광수;안종문;강훈;정진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.89-92
    • /
    • 2005
  • An experimental study was conducted to study the mechanical properties of recycled aggregate concrete in accordance with the different replacement ratios of recycled fine and coarse aggregate, ranging from 0$\%$ to 30$\%$ and 0$\%$ to 50$\%$, respectively. According to increase of these replacement ratios, compressive strengths and elastic modulus are reduced down to $10\∼20\%$ and $15\∼30\%$, respectively. The reducing ratios of elastic modulus are more distinct than that of compressive strength. For the selection of replacement ratios of recycled aggregate for structural concrete properly, it is necessary to evaluate the elastic modulus carefully.

  • PDF

Determination of the elastic properties in CFRP composites: comparison of different approaches based on tensile tests and ultrasonic characterization

  • Munoz, Victor;Perrin, Marianne;Pastor, Marie-Laetitia;Welemane, Helene;Cantarel, Arthur;Karama, Moussa
    • Advances in aircraft and spacecraft science
    • /
    • 제2권3호
    • /
    • pp.249-261
    • /
    • 2015
  • The mechanical characterization of composite materials is nowadays a major interest due to their increasing use in the aeronautic industry. The design of most of these materials is based on their stiffness, which is mainly obtained by means of tensile tests with strain gauge measurement. For thin laminated composites, this classical method requires adequate samples with specific orientation and does not provide all the independent elastic constants. Regarding ultrasonic characterization, especially immersion technique, only one specimen is needed and the entire determination of the stiffness tensor is possible. This paper presents a study of different methods to determine the mechanical properties of transversely isotropic carbon fibre composite materials (gauge and correlation strain measurement during tensile tests, ultrasonic immersion technique). Results are compared to ISO standards and manufacturer data to evaluate the accuracy of these techniques.

Characterization of Elastic, Dielectric and Piezoelectric Properties of piezoelectric Materials

  • Cao, Wenwu
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.13-22
    • /
    • 1999
  • Both the resonance and ultrasonic techniques are standard methods far characterizing the physical properties of piezoelectric materials. However, we found that each technique can only offer a few reliable measurements while the rest often have errors or impossible to implement because of the sample requirements. This paper show that one can use the combination of both techniques to achieve much better accuracy and be able to get the complete set of elastic, dielectric and piezoelectric coefficients using fewer samples. Using an ultrasonic spectroscopy we have also measure the dispersion of the ultrasonic velocity and the attenuation up to 65 MHz. Pb(Zr,Ti)O$_3$[PZT] ceramics were used as examples fur both studies.

  • PDF

다결정 3C-SiC 박막의 기계적 특성 (Mechanical Characteristics of Poly 3C-SiC Thin Films)

  • 한기봉;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.359-360
    • /
    • 2007
  • In this paper, the elastic modulus and hardness of poly 3C-SiC thin films growed by APCVD were measured using nanoindentation test. The resulting values of elastic modulus E and hardness H of the poly 3C-SiC film are 305 GPa and 26 GPa, respectively. The mechanical properties of the poly 3C-SiC film are better than bulk Si wafers. Therefore, the poly 3C-SiC thin film is suitable for abrasion resistance, high frequency, and bio MEMS applications.

  • PDF