• 제목/요약/키워드: elastic plastic FEM

검색결과 113건 처리시간 0.027초

A Study of Predicting Method of Residual Stress Using Artificial Neural Network in $CO_2$Arc welding

  • Cho, Y.;Rhee, S.;Kim, J.H.
    • International Journal of Korean Welding Society
    • /
    • 제1권2호
    • /
    • pp.51-60
    • /
    • 2001
  • A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermo-mechanical analysis has been performed for the $CO_2$ arc welding using the finite element method. The first part of numerical analysis performs a three-dimensional transient heat transfer analysis, and the second part then uses the results of the first part and performs a three-dimensional transient thermo-elastic-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method are used to train a back propagation neural network to predict the residual stress. Architecturally, the fully interconnected network consists of an input layer for the voltage and current, a hidden layer to accommodate the failure mechanism mapping, and an output layer for the residual stress. The trained network is then applied to the prediction of residual stress in the four specimens. It is concluded that the accuracy of the neural network predicting method is fully comparable with the accuracy achieved by the traditional predicting method.

  • PDF

A novel two-dimensional approach to modelling functionally graded beams resting on a soil medium

  • Chegenizadeh, Amin;Ghadimi, Behzad;Nikraz, Hamid;Simsek, Mesut
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.727-741
    • /
    • 2014
  • The functionally graded beam (FGB) is investigated in this study on both dynamic and static loading in case of resting on a soil medium rather than on the usual Winkler-Pasternak elastic foundation. The powerful ABAQUS software was used to model the problem applying finite element method. In the present study, two different soil models are taken into account. In the first model, the soil is assumed to be an elastic plane stress medium. In the second soil model, the Drucker-Prager yield criterion, which is one of the most well-known elastic-perfectly plastic constitutive models, is used for modelling the soil medium. The results are shown to evaluate the effects of the different soil models, stiffness values of the elastic soil medium on the normal and shear stress and free vibration properties. A comparison was made to those from the existing literature. Numerical results show that considering real soil as a continuum space affects the results of the bending and the modal properties significantly.

A displacement controlled method for evaluating ground settlement induced by excavation in clay

  • Qian, Jiangu;Tong, Yuanmeng;Mu, Linlong;Lu, Qi;Zhao, Hequan
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.275-285
    • /
    • 2020
  • Excavation usually induces considerable ground settlement in soft ground, which may result in damage of adjacent buildings. Generally, the settlement is predicted through elastic-plastic finite element method and empirical method with defects. In this paper, an analytical solution for predicting ground settlement induced by excavation is developed based on the definition of three basic modes of wall displacement: T mode, R mode and P model. A separation variable method is employed to solve the problem based on elastic theory. The solution is validated by comparing the results from the analytical method with the results from finite element method(FEM) and existing measured data. Good agreement is obtained. The results show that T mode and R mode will result in a downward-sloping ground settlement profile. The P mode will result in a concave-type ground settlement profile.

Comments on a Case Study on Engineering Failure Analysis of Link Chain

  • Yu, George Y.H.
    • Safety and Health at Work
    • /
    • 제12권4호
    • /
    • pp.544-545
    • /
    • 2021
  • The article by Tae-Gu Kim et al. conducted elastic FE modeling, which was inappropriate for fracture of elastic-plastic chain material (11.3% of elongation). FE analysis results and the findings in the fracto-graphic analysis did not tally but contradicted each other. The article identified "incorrect installation"/bending forces as the root cause while FE results of the chain under bending forces showed very low stresses at fracture locations but the highest stress in the middle of shank of the chain. The article's "step-like topographies indicating the fracture due to bending moment rather than uniaxial tension" lacked scientific support. The load value carried by each chain section under bending/incorrect installation was only half of that under tension, thus the article using same load value in FE simulation comparison for bending and tension was incorrect. The real cause of the chain fracture was likely improper checking the lifted load or/and using the wrong chain with much lower safety working load.

면외압을 받는 판재의 국부네킹 발생 조건 (Localized necking condition of sheet metals is subjected to out-of plane force)

  • 정태훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.579-584
    • /
    • 2002
  • In press forming of sheet metals, the material sheet is usually subjected to very large plastic strain under in-plane stressing. Moreover, the sheet also very often is subjected to out-of-plane compressive force between tools such as the upper and lower dies, the blank holder and the die, and so forth. In this paper, it is clearly demonstrated theoretically that out-of-plane stress may notably raise the forming limit strain and thus it cm be effectively utilized to avoid earlier fracture of the sheet in press forming.

  • PDF

디프드로잉이 포함된 소성가공의 공정설계에 관한 연구 (A Study on the Process Sequence Design in Metal Forming including Deep Drawing)

  • 황병복;임중연;이호용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 추계학술대회 논문집
    • /
    • pp.107-117
    • /
    • 1994
  • A design methodology is applied for manufacturing a disk-brake piston component and a washing machine container. The design criteria are the limit drawing ratio and the forging load within the available press limit. Also, the final product should not have any geometrical defect. The rigid-plastic and elastic-plastic FEM have been applied to simulate both of the conventional manufacturing processes, respectively, which include deep drawing and forging process. Simulations of one stage process from a selected stock to the final product shape are performed for generating information on additional requirements for metal flow. The best manufacturing processes are selected, which is using a hemispherical punch in the deep drawing process for both disk-brake piston component and washing machine container.

  • PDF

판재의 이론적 변형한계 스트레인의 면외압 의존성 (Effect of Out-of- Plane Stress on the theoretical Forming Limit Strain of Sheet Metals)

  • 정태훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.162-169
    • /
    • 2004
  • In press forming of sheet metals, the material sheet is usually subjected to very large plastic strain under in-plane stressing. Moreover, the sheet also very often is subjected to out-of-plane compressive force between tools such as the upper and lower dies, the blank holder and the die, and so forth. In this paper, it is clearly demonstrated theoretically that out-of-plane stress may notably raise the forming limit strain and thus it can be effectively utilized to avoid earlier fracture of the sheet in press forming.

  • PDF

유한요소법을 이용한 보강롤 구동 4단 냉간압연기에서의 압연하중 및 스트립 두께 예측 (FEM Based Approach to Predict Rolling Force and Strip Thickness in 4-High Cold Rolling Mill Driven by Backup-Roll)

  • 이재현;변상민;박흥식
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.129-135
    • /
    • 2009
  • In this paper, a finite element model is presented for the prediction of roll force and strip thickness in a backup-roll-drive mill. The proposed FE model is focused mainly on analyzing the elastic/plastic behavior between a work roll and a strip as well as the rigid/plastic behavior between a backup roll and a work roll. The capability of the proposed model is demonstrated through application to 4-high silicon steel rolling mill at POSCO. Results show that the predicted roll force and strip thickness rolled accurately agree with the measured them. It is also illustrated that the proper position of work roll displaced to one side from the vertical centerline of the backup-roll may be determined by minimizing the horizontal force of work roll.

  • PDF

대형 용접구조물의 탄소성 열변형 해석을 위한 용접부의 변형률 경계조건에 관한 연구 (A Study on Weldment Boundary Condition for Elasto-Plastic Thermal Distortion Analysis of Large Welded Structures)

  • 하윤석
    • Journal of Welding and Joining
    • /
    • 제29권4호
    • /
    • pp.48-53
    • /
    • 2011
  • A thermal distortion analysis which takes strains directly as boundary conditions removed barrier of analysis time for the evaluation of welding distortion in a large shell structure like ship block. If the FE analysis time is dramatically reduced, the structure modeling time or the input-value calculating time will become a new issue. On the contrary to this, if the calculation time of analysis input-value is dramatically reduced and its results also are more meaningful, a little longer analysis time could be affirmative. In this study, instead of using inherent strain based on elastic analysis, a thermal strain based on elasto-plastic analysis is used as the boundary condition of weldments in order to evaluate the welding distortion. Here, the thermal strain at the weldment was established by using a stress-strain curve established from the test results. It is possible to automatically recognize the modeling induced-stiffness in the shrinkage direction of welded or heated region. The validity of elasto-plastic thermal distortion analysis was verified through the experiment results with various welding sequence.

강재 모멘트 골조의 비선형 지진 해석을 위한 부등단면 보 요소 II: 모델의 검증 (Non-Prismatic Beam Element for Nonlinear Seismic Analysis of Steel Moment Frames II: Verification of Model)

  • 황병국;전충하;김기동;고만기
    • 한국방재학회 논문집
    • /
    • 제7권5호
    • /
    • pp.37-46
    • /
    • 2007
  • 본 연구는 강재 모멘트 골조의 비선형 지진 해석을 위한 부등단면 보 요소에 관한 두 개의 동반논문 중에서 두 번째 논문이다. 동반논문에서는 지진운동 하의 단면감소(RBS) 강재 보의 탄성 및 비탄성 거동을 정의하기 위한 부등단면 보(RBS 보) 요소를 제시하였고 본 연구에서는 RBS 보 요소에 대한 항복면, 강성 변수, 그리고 경화(혹은 연화) 법칙 변수의 결정과정을 기술하였고 RBS 보 요소의 해석결과를 실험 및 유한요소 해석(FEM) 결과와 비교하였다. RBS 보 요소의 해석결과는 실험 및 FEM 결과와 좋은 상관관계를 보였다.