• Title/Summary/Keyword: elastic materials

Search Result 1,867, Processing Time 0.026 seconds

Fabrication and Mechanical Characterization of Braided Carbon Fiber Reinforced Al Matrix Composites (Braided 탄소섬유강화 알루미늄 기지 금속복합재료의 제조 및 기계적 특성평가)

  • 김경태;이상관;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.131-134
    • /
    • 2002
  • Braided carbon fiber reinforced Al matrix composites were developed and characterized. Braided carbon fiber preforms with braiding angles of $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$ were manufactured by using a braiding machine. The manufactured braided carbon fibers were used as reinforcement to fabricate Al matrix composites by employing a pressure infiltration casting method. In the processing of pressure infiltration casting, important processing parameters such as melting temperature, preheating temperature of preform and applied pressure were optimized. Prediction of elastic constants on composites was performed by using the volume averaging method, which utilizes the coordinate transformation and the averaging of stiffeness and compliance constants based upon the volume of each reinforcement and matrix material. The elastic moduli of composites were evaluated by using Resonant Ultrasound Spectroscopy(RUS) method and compared with the elastic moduli obtained from static tensile test method.

  • PDF

DEVELOPMENT OF A REFINED STRUCTURAL MODEL FOR COMPOSITE BLADES WITH ARBITRARY SECTION SHAPES (임의의 단면 형상을 갖는 복합재료 블레이드의 첨단 구조해석 모델 개발)

  • Jung, Sung-Nam;Inderjit Chopra
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.215-218
    • /
    • 1999
  • A general structural model, which is an extension of the Vlassov theory, is developed for the analysis of composite rotor blades with elastic couplings. A comprehensive analysis applicable to both thick-and thin-walled composite beams, which can have either open- or closed profile is formulated. The theory accounts for the effects of elastic couplings, shell wall thickness, and transverse shear deformations. A semi-complementary energy functional is used to account for the shear stress distribution in the shell wall. The bending and torsion related warpings and the shear correction factors are obtained in closed form as part of the analysis. The resulting first order shear deformation theory describes the beam kinematics in terms of the axial, flap and lag bending, flap and lag shear, torsion and torsion-warping deformations. The theory is validated against experimental results for various cross-section beams with elastic couplings.

  • PDF

Stochastic response analysis of visco-elastic slit shear walls

  • Kwan, A.K.H.;Tian, Q.L.;Cheung, Y.K.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.377-394
    • /
    • 1998
  • Slit shear walls an reinforced concrete shear wall structures with purposely built-in vertical slits. If the slits are inserted with visco-elastic damping materials, the shear walls will become viscoelastic sandwich beams. When adequately designed, this kind of structures can be quite effective in resisting earthquake loads. Herein, a simple analysis method is developed for the evaluation of the stochastic responses of visco-elastic slit shear walls. In the proposed method, the stiffness and mass matrices are derived by using Rayleigh-Ritz method, and the responses of the structures are calculated by means of complex modal analysis. Apart from slit shear walls, this analysis method is also applicable to coupled shear walls and cantilevered sandwich beams. Numerical examples are presented and the results clearly show that the seismic responses of shear wall structures can be substantially reduced by incorporating vertical slits into the walls and inserting visco-elastic damping materials into the slits.

Computational modelling for description of rubber-like materials with permanent deformation under cyclic loading

  • Guo, Z.Q.;Sluys, L.J.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.317-328
    • /
    • 2008
  • When carbon-filled rubber specimens are subjected to cyclic loading, they do not return to their initial state after loading and subsequent unloading, but exhibit a residual strain or permanent deformation. We propose a specific form of the pseudo-elastic energy function to represent cyclic loading for incompressible, isotropic materials with stress softening and residual strain. The essence of the pseudo-elasticity theory is that material behaviour in the primary loading path is described by a common elastic strain energy function, and in unloading, reloading or secondary unloading paths by a different strain energy function. The switch between strain energy functions is controlled by the incorporation of a damage variable into the strain energy function. An extra term is added to describe the permanent deformation. The finite element implementation of the proposed model is presented in this paper. All parameters in the proposed model and elastic law can be easily estimated based on experimental data. The numerical analyses show that the results are in good agreement with experimental data.

Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers

  • Karami, Behrouz;Shahsavari, Davood
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.215-225
    • /
    • 2019
  • In the present paper, the nonlocal strain gradient refined model is used to study the thermal stability of sandwich nanoplates integrated with piezoelectric layers for the first time. The influence of Kerr elastic foundation is also studied. The present model incorporates two small-scale coefficients to examine the size-dependent thermal stability response. Elastic properties of nanoplate made of functionally graded materials (FGMs) are supposed to vary through the thickness direction and are estimated employing a modified power-law rule in which the porosity with even type of distribution is approximated. The governing differential equations of embedded sandwich piezoelectric porous nanoplates under hygrothermal loading are derived through Hamilton's principle where the Galerkin method is applied to solve the stability problem of the nanoplates with simply-supported edges. It is indicated that the thermal stability characteristics of the porous nanoplates are obviously influenced by the porosity volume fraction and material variation, nonlocal parameter, strain gradient parameter, geometry of the nanoplate, external voltage, temperature and humidity variations, and elastic foundation parameters.

Determination of Mechanical Properties of Equal Channel Angular Pressed Aluminum Alloys in Nano-surface Region (나노표면 영역에서의 ECAP 변형된 알루미늄합금의 기계적 물성변화 측정)

  • An, SeongBin;Kim, ChungSeok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.3
    • /
    • pp.113-117
    • /
    • 2019
  • The effects of severe plastic deformation and heat treatment on the mechanical properties of Al 5052 and 6005 alloys were investigated using the metallurgical technique and nano-indentation technique in nano-surface region. Equal channel angular pressing (ECAP) was used to apply severe plastic deformation to the aluminum alloys in order to obtain fine grain sized materials. The elastic modulus was measured and interpreted in relation to the metallurgical observation. The elastic modulus increased after ECAP process due to evolution of the fine grains. However, the elastic modulus decreased after heat treatment due to generation of coarsened precipitates on the grain boundaries.

Equivalence of the times of flight by ultrasonic energy and phase velocities and determination of the elastic constants of anisotropic materials (초음파의 에너지속도와 위상속도의 주행시간 동시성과 이방성 재료의 탄성계수 결정)

  • Jeong, Hyun-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.95-103
    • /
    • 1994
  • The purpose of this paper is to provide the experimenters who use the oblique incidence ultrasonic method for anisotropic elastic constants measurement eith some useful relations. In particular, the equivalence of the times of flight by the energy ad phase velocities, which is key to the oblique incidence method, is proved explicitly. This equivalence greatly simplifies the analysis of immersion measurement results. In oredr to correctly measure the transit time of an immersed sample using the oblique incidence, the receiving transducer should be shifted laterally, and an expression in given for this shift. A method for determining all nine elastic constants of an orthotropic material is briefly described and the measurement results are listed for SiC particulate reinforced A1 matrix composites.

  • PDF

Development of Aluminum Matrix Composites Containing Nano-carbon Materials (나노탄소물질을 함유하는 알루미늄기지 복합소재 개발)

  • Kim, Jungjoon;Kim, Daeyoung;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.253-258
    • /
    • 2021
  • There is increasing demand for the development of a new material with high strength, high stiffness, and good electrical conductivity that can be used for high-voltage direct current cables. In this study, we develop aluminum-based composites containing C60 fullerenes, carbon nanotubes, or graphene using a powder metallurgical route and evaluate their strength, stiffness, coefficient of thermal expansion, and electrical conductivity. By optimizing the process conditions, a material with a tensile strength of 800 MPa, an elastic modulus of 90 GPa, and an electrical conductivity of 40% IACS is obtained, which may replace iron-core cables. Furthermore, by designing the type and volume fraction of the reinforcement, a material with a tensile strength of 380 MPa, elastic modulus of 80 GPa, and electrical conductivity of 54% IACS is obtained, which may compete with AA 6201 aluminum alloys for use in all-aluminum conductor cables.

Design of Zr-7Si-xSn Alloys for Biomedical Implant Materials (생체의료용 임플란트 소재를 위한 Zr-7Si-xSn 합금설계)

  • Kim, Minsuk;Kim, Chungseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.1
    • /
    • pp.8-19
    • /
    • 2022
  • The metallic implant materials are widely used in biomedical industries due to their specific mechanical strenth, corrosion registance, and superior biocompatability. These metallic materials, however, suffer from the stress-shielding effect and the generation of artifacts in the magnetic resonance imaging exam. In the present study, we develope a Zr-based alloys for the biomedical implant materials with low elastic modulus and low magnetic susceptibility. The Zr-7Si-xSn alloys were fabricated by an arc melting process. The elastic modulus was 24~31 GPa of the zirconium-based alloy. The average magnetic susceptibility value of the Zr-7Si-xSn alloy was 1.25 × 10-8cm3g-1. The average Icorr value of the Zr-7Si-xSn alloy was 0.2 ㎂/cm2. The Sn added zirconium alloy, Zr-7Si-xSn, is very interested and attractive as a biomaterial that reduces the stress-shielding effect caused by the difference of elastic modulus between human bone and metallic implant.

Tests of Visco-elastic-Damping Models Using A Small Shaking Table (소형진동대를 이용한 점탄성감쇠 모델실험)

  • 이한선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.188-195
    • /
    • 1998
  • The main objective of this study is to observe the effect of visco-elastic damper on seismic behavior of structure. A small shaking table was designed and manufactured using the materials and machinery available in the market by the authors. Also, two small-scale models with and without visco-elastic dampers were made. Dynamic characteristics, such as natural periods and damping ratios, were measured with free vibration tests. Finally, the earthquake simulations tests by using this shaking table were performed to these models. Based on the test results, the effect of visco-elastic damper on the seismic response of models is evaluated.

  • PDF