Browse > Article
http://dx.doi.org/10.12656/jksht.2022.35.1.8

Design of Zr-7Si-xSn Alloys for Biomedical Implant Materials  

Kim, Minsuk (Department of Advanced Materials Engineering, Chosun University)
Kim, Chungseok (Department of Materials Science and Engineering, Chosun University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.35, no.1, 2022 , pp. 8-19 More about this Journal
Abstract
The metallic implant materials are widely used in biomedical industries due to their specific mechanical strenth, corrosion registance, and superior biocompatability. These metallic materials, however, suffer from the stress-shielding effect and the generation of artifacts in the magnetic resonance imaging exam. In the present study, we develope a Zr-based alloys for the biomedical implant materials with low elastic modulus and low magnetic susceptibility. The Zr-7Si-xSn alloys were fabricated by an arc melting process. The elastic modulus was 24~31 GPa of the zirconium-based alloy. The average magnetic susceptibility value of the Zr-7Si-xSn alloy was 1.25 × 10-8cm3g-1. The average Icorr value of the Zr-7Si-xSn alloy was 0.2 ㎂/cm2. The Sn added zirconium alloy, Zr-7Si-xSn, is very interested and attractive as a biomaterial that reduces the stress-shielding effect caused by the difference of elastic modulus between human bone and metallic implant.
Keywords
Biomaterials; Zirconium; Biomedical implant; Modulus; Susceptibility;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Y. Kim, H. W. Hwang, D. H. Lee, J. G. Lee, and D. G. Lee : J. Korean Soc. Heat Treatment, 34 (2021) 1-6.   DOI
2 J. M. Cordeiro, L. P. Faverani, C. R. Grandini, E. C. Rangel, N. C. da Cruz, F. H. Nociti Junior, A. B. Almeida, F. B. Vicente, B. R. G. Morais, V. A. R. Barao, and W. G. Assuncao : Mater. Sci. Eng. C, 92 (2018) 849-861.   DOI
3 H. Okamoto : J. Phase Equilibria., 11 (1990) 513-519.   DOI
4 C. Li, Y. Zhan, and W. Jiang : Mater. Des., 32 (2011) 4598-4602.   DOI
5 C. Colinet, R. Viennois, and J.-C. Tedenac : Calphad., 36 (2012) 118-126.   DOI
6 H. Okamoto : J. Phase Equilibria Diffus., 31 (2010) 411-412.   DOI
7 J. Zhang, H. Tang, and Y. Zhan : J. Mater. Res. Technol., 9 (2020) 8896-8904.   DOI
8 Y. Okazaki, S. Rao, T. Tateishi, and Y. Ito : J. Mater. Sci. Eng. A, 243 (1998) 250-256.   DOI
9 Li, Y. Zhan and W. Jiang : Mater. Des., 34 (2012) 479-482.   DOI
10 D. A. Padmavathi : Mater. Sci. Appl., 2 (2011) 97-104.   DOI
11 K. Aniolek and M. Kupka : Mater. Chem. Phys., 171 (2016) 374-378.   DOI
12 M. Abdel-Hady Gepreel, and M. Niinomi : J. Mech. Behav. Biomed. Mater., 20 (2013) 407-415.   DOI
13 황건재 : 치과용 임플란트를 위한 저 탄성계수 및 자기민감성을 갖는 지르코늄기 합금 연구, 조선대학교 석사 학위논문 (2018).
14 C. M. Lee, W. F. Ho, C. P. Ju, and J. H. C. Lin : J. Mater. Sci. Mater. Med., 13 (2002) 695-700.   DOI
15 F. Duttenhoefer, M. E. Mertens, J. Vizkelety, F. Gremse, V. A. Stadelmann, and S. Sauerbier : Clin. Oral Implants Res., 26 (2015) 1195-1202.   DOI
16 F. Y. Zhou, K. J. Qiu, H. F. Li, T. Huang, B. L. Wang, L. Li, and Y. F. Zheng : Acta Biomater., 9 (2013) 9578-9587.   DOI
17 Y. M. Yeon, Y. H. Jeong, and M.Y. Wee : Korean J. mater. Res., 7 (1997) 772-780.
18 K. Miura, N. Yamada, S. Hanada, T.-K. Jung, and E. Itoi : Acta Biomater., 7 (2011) 2320-2326.   DOI
19 G. R. Parr, L. K. Gardner, and R. W. Toth : J. Prosthetic Dent., 54 (1985) 410-414.   DOI
20 T. Hanawa : Mater. Sci. Eng. C, 24 (2004) 745-752.   DOI
21 Okazaki and E. Gotoh : Biomater., 26 (2005) 11-21.   DOI
22 J. Olsrud, J. Latt, S. Brockstedt, B. Romner, and I. Bjorkman-Burtscher : J. Magn. Reson. Imaging, 22 (2005) 433-437.   DOI
23 X. M. Ma and W. Sun : J. Alloys Compd., 509 (2011) S294-S298.   DOI
24 J. Y. Hwang, D. J. Lee, K. K Lee, K. L. Yoon, and C. G Jun : J. Korean Soc. Heat Treatment, 18 (2005) 91-98.
25 M. Sancho-Puchades, C. H. F. Hammerle, and G. I. Benic : Clin. Oral Implants Res., 26 (2015) 1222-1228.   DOI
26 H. D. Kocasarac, G. Ustaoglu, S. Bayrak, R. Katkar, H. Geha, and M. Noujeim : Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 128 (2019) e161-e162.
27 T. Ernstberger, G. Heidrich, T. Bruening, S. Krefft, G. Buchhorn, and H. M. Klinger : Eur. Spine J., 16 (2007) 179-185.   DOI
28 F. Y. Zhou, K. J. Qiu, D. Bian, Y. F. Zheng, and J. P. Lin : J. Mater. Sci. Technol., 30 (2014) 299-306.   DOI
29 M. Niinomi, Y. Liu, M. Nakai, H. Liu, and H. Li : Regen. Biomater., 3 (2016) 173-185.   DOI
30 J. F. Schenck : Med. Phys., 23 (1996) 815-850.   DOI
31 D. A. Jones : Principles and prevention of corrosion, 2nd ed, Prentice Hall (1996) 572.
32 N. SEliaz, E. Gileadi : Physical Electrochemistry: Fundamentals, Techniques, and Applications, 2nd ed, Wiley-VCH (2019) 480.
33 J. M. Salman and M. L. Aziz : Iraqi J. Electr. Electron. Eng., 19 (2019) 138-156.
34 N. Eliaz : Materials, 12 (2019) 407.   DOI
35 Suresh N. Kadam, Kailash R. Jagdeo, and M. R. Nair : IRJES, 3 (2014) 30-34.
36 R. Xue, D. Wang, D. Yang, L. Zhang, X. Xu, L. Liu, and D. Wu : Materials, 13 (2020) 5130.   DOI
37 G. J. Ewers and E. H. Greener : J. Oral Rehabil., 12 (1985) 469-476.   DOI
38 S. G. S. Charlena and M. Fajar : J. Phys. Conf., 776 (2016) 012056.   DOI