• Title/Summary/Keyword: elastic catenary cable

Search Result 26, Processing Time 0.02 seconds

A Study on a Nonlinear Cable Finite Element (非線形 케이블 有限要素에 관한 硏究)

  • 장승필;박정일
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.93-101
    • /
    • 1989
  • A geometrically nonlinear cable finite element is presented to use in the static or dynamic modeling of offshore and onshore structures such as guyed tower, tension leg platform or mooring buoy, submarine cable, cable-stayed bridge, suspension bridge, cable roof and so on. The cable finite element is derived directly from the compatibility equations and flexibility matrix of elastic catenary cable theory for the arbitary plane loading and geome try. A general and virsatile computer program has been developed to perform the analyses of cable member itself or cable guyed or suspened structures, in which Newmark-$\beta$ method is used to obtain a time domain solution and Newton-Raphson iteration method is used to solve the nonlinear system of compatibility equations of cable and algebraic static or dynamic equations at each time step. The results from the static and dynamic analysis of a cable member by the computer program are summarized and presented.

  • PDF

Initial Equilibrium State Analysis of Cable Stayed Bridges Considering Axial Deformation (축방향 변형을 고려한 사장교의 초기평형상태 해석)

  • Kim, Je Choon;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.539-547
    • /
    • 2002
  • The study proposed the initial equilibrium state analysis method that considers axial deformation, in order to accurately determine the initial shape of a cable-stayed bridge. Sepecifically, the proposed method adopted the successive iteration method. In order to evaluate appropriate initial cable force introduced in the initial equilibrium state analysis, parametric studies were performed and a useful linear analysis method proposed. The geometrically nonlinear static behaviors of cable-stayed bridges were considered, using three-dimensional frame element and elastic catenary cable element. The usefulness and applicability of the analytic method proposed in this study were demonstrated using numerical examples, including a real cable-stayed bridge. The algorithm, is applicable in cases wherein axial deformation is not adopted in the fabrication camber, or final cable force is adjusted to eliminate construction and fabrication errors occurring during construction.

Comparison Study of An Improved Initial Force and TCUD Method for Initial Shape Analysis of Cable-Stayed Bridges (사장교의 초기형상해석을 위한 개선된 초기부재력법 및 TCUD법의 비교연구)

  • Kim, Dong-Yeong;Jo, Kyeong-Sik;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.101-108
    • /
    • 2012
  • Initial shape analysis for cable-stayed bridges should be able to find optimizated initial cable forces and unstrained length that minimize deflection and bending moments of the deck and pylon. Comparison study of an improved initial force method and TCUD method for determination of initial cable forces in cable-stayed bridges is presented in this paper. For this purpose, an elastic catenary cable element and a nonlinear frame element are firstly described. And concepts and algorithm of two analysis methods are then presented. Finally to demonstrate the validity and the accuracy of two methods, numerical examples for initial state problems of cable-stayed bridges are given and compared based on these methods.

Comparison of Dynamic Responses According to Anchorage Type of Suspesion Bridges (현수교의 정착 형식에 따른 이동하중에 의한 동적 응답의 비교)

  • Suh, Jeong In;Kim, Ho Kyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.103-110
    • /
    • 2000
  • The suspension bridge is divided by an earth anchor and a self-anchor type according to the anchorage type. This study is to evaluate the dynamic effect of moving vehicles to suspension bridges. The results were presented with the dynamic magnification factor (DMF) by the effect of vehicle speed and weight according to the anchorage type. The vehicle model has 6 degrees of freedom to idealize nonlinear multi-leaf suspensions and elastic tires of tractor-trailer. The bridge was modelled with the 3-dimensional frame element and 3-dimensional elastic catenary cable element. The condition of deck surface is considered using the actual road spectra.

  • PDF

Closing Analysis of Symmetric Steel Cable-stayed Bridges and Estimation of Construction Error (대칭형 강 사장교의 폐합해석과 시공오차의 예측)

  • Lee, Min Kwon;Lee, Hae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.55-65
    • /
    • 2006
  • This paper presents the closing analysis of a symmetric steel cable-stayed bridge erected by a free cantilever method. Two independent structural systems are formed before the closing procedure of a bridge is performed, and thus the compatibility conditions for vertical displacement and rotational angle are not satisfied at the closing section without the application of proper sectional forces. Since, however, it is usually impossible to apply sectional forces at the closing section, the compatibility conditions should be satisfied by proper external forces that can be actually applicable to a bridge. Unstrained lengths of selected cables and the pull-up force of a derrick crane are adjusted to satisfy nonlinear compatibility conditions, which are solved iteratively by the Newton-Raphson method. Cable members are modeled by the elastic catenary cable elements, and towers and main girders are discretized by linear 3-D frame elements. The sensitivities of displacement with respect to the unstrained lengths of selected cables and the pull-up force of the derrick crane are evaluated by the direct differentiation of the equilibrium equation. A Monte-Carlo simulation approach is proposed to estimate expected construction errors for a given confidence level. The proposed method is applied to the second Jindo Grand Bridge to demonstrate its validity and effectiveness.

Seismic Response Analysis of a Floating Bridge with Discrete Pontoons (이산폰툰형 부유식교량의 지진응답해석)

  • Kwon, Jang-Sup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.47-58
    • /
    • 2005
  • Dynamic response analysis in time dimain is conducted for floating bridges with discrete pontoons subject to spatial variation of ground motions. The Spatial variation of ground motions is considered with the coherency function model which represents wave passage, incoherence and local site effects. The superstructure of the bridge is represented by space frame and elastic catenary cable elements, the abutment us modelde with the spring element of FHWA guideline for considering soil structure interaction and the concept of retardation function is utilized to consider the frequency dependency of the hydrodynamic coefficients which are obtainde by boundary element method. multiple support excitations considering the spatial variation. The noticeable amplification of the response can be shown when the spatial variation of ground motions is incorporated in the anallysis of floating bridges.