• Title/Summary/Keyword: eight Joints

Search Result 96, Processing Time 0.03 seconds

The Influence of Fixation Rigidity on Intervertebral Joints - An Experimental Comparison between a Rigid and a Flexible System

  • Kim, Won-Joong;Lee, Sang-Ho;Shin, Song-Woo;Rivard, Charles H.;Coillard, Christine;Rhalmi, Souad
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.5
    • /
    • pp.364-369
    • /
    • 2005
  • Objective: Spinal instrumentation without fusion often fails due to biological failure of intervertebral joints (spontaneous fusion, degeneration, etc). The purpose of this study is to investigate the influence of fixation rigidity on viability of intervertebral joints. Methods: Twenty pigs in growing period were subjected to posterior segmental fixation. Twelve were fixed with a rigid fixation system(RF) while eight were fixed with a flexible unconstrained implant(FF). At the time of the surgery, a scoliosis was created to monitor fixation adequacy. The pigs were subjected to periodic radiological examinations and 12pigs (six in RF, six in FF) were euthanized at 12-18months postoperatively for analysis. Results: The initial scoliotic curve was reduced from $31{\pm}5^{\circ}$ to $27{\pm}8^{\circ}$ in RF group (p=0.37) and from $19{\pm}4^{\circ}$ to $17{\pm}5^{\circ}$ in FF group (p=0.21). Although severe disc degeneration and spontaneous fusion of facet joints were observed in RF group, disc heights of FF group were well maintained without major signs of degeneration. Conclusion: The viability of the intervertebral joints depends on motion spinal fixation. Systems allowing intervertebral micromotion may preserve the viability of intervertebral discs and the facet joint articular cartilages while maintaining a reasonably stable fixation.

Strength Estimation of Composite Joints Based on Progressive Failure Analysis (점진적 파손해석 기법을 이용한 복합재 체결부의 강도해석)

  • 신소영;박노회;강경국;권진회;이상관;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.163-167
    • /
    • 2001
  • A two-dimensional progressive failure analysis method is presented for the strength characterization of the composite joints under pin loading. The eight-nodes laminated she]1 element is utilized based on the updated Lagrangian formulation. The criteria by Yamada-Sun, Tsai-Wu, and the maximum stress are used for the failure estimation. The stiffness of failed layer is degraded by the complete unloading method. No factor depending on test is included in the finite element analysis except for the material strength and stiffness. Total 20 plate specimens with and without hole are tested to validate the finite element prediction. The Tsai-Wu failure criterion most conservatively estimates the strength of laminate, and the maximum stress criterion yields the highest strength because it does not consider the coupling of the failure modes. The strength by Yamada-Sun method neglecting the matrix failure effect are located between other two methods and shows best agreement with test result for laminate with hole.

  • PDF

Chaos Analysis of Major Joint Motions for Young Males During Walking (보행시 전신 주요 관절의 카오스 지수 분석)

  • Park, Jung-Hong;Son, Kwon;Seo, Kuk-Woong;Park, Young-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.792-795
    • /
    • 2007
  • To quantify irregular body motions the time series analysis was applied to the gait study. The motions obtained from gait experiment are complex to exhibit nonlinear behaviors. The purpose of this study is to measure quantitatively the characteristics of the major six joints of the body during walking. The gait experiments were carried out for eighteen young males walking on a motor driven treadmill. Joint motions were captured using eight video cameras, and then three dimensional kinematics of the neck and the upper and lower extremities were computed by KWON 3D motion analysis software. The largest Lyapunov exponent was calculated from the time series to quantify stabilities of each joint. The results provides a data set of nonlinear dynamic characteristics for six joints engaged in normal walking.

  • PDF

Statistical Analysis of Major Joint Motions During Level Walking for Men and Women (보행에서 남성과 여성에 대한 주요 관절 운동의 통계학적 분석)

  • Kim, Min-Kyoung;Park, Jung-Hong;Son, Kwon;Seo, Kuk-Woong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.786-791
    • /
    • 2007
  • Statistical differences between men and women are investigated for a total of eleven joint motions during level walking. Human locomotion which exhibits nonlinear dynamical behaviors is quantified by the chaos analysis. Time series of joint motions was obtained from gait experiments with ten young males and ten young females. Body motions were captured using eight video cameras, and the corresponding angular displacements of the neck and the upper body and lower extremity were computed by motion analysis software. The maximal Lyapunov exponents for eleven joints were calculated from attractors constructed and then were analyzed statistically by one-way ANOVA test to find any difference between the genders. This study shows that sexual differences in joint motions were statistically significant at the shoulder, knee and hip joints.

  • PDF

Measuring Range of Motion and Muscle Activation of Flower Arrangement Tasks and Application for Improving Upper Limb Function (꽃꽂이 작업의 관절가동범위와 근육활성도 측정 및 상지기능 향상을 위한 적용사례)

  • Lee, Son-Sun;Park, Sin-Ae;Kwon, Oh-Yun;Song, Jong-Eun;Son, Ki-Cheol
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.449-462
    • /
    • 2012
  • The objectives of this study were to measure the range of motion for joints and muscle activation of upper limb for flower arrangement tasks for physical rehabilitation and to test horticultural therapy programs using flower arrangement tasks for improving upper limb function of the patients with stroke. Major flower arrangement tasks were classified with eight tasks (cutting 1, thick stem; cutting 2, thin stem; fixing 1, long stem; fixing 2, short stem; rolling a leaf; bending 1, thick stem; bending 2, thin stem; and winding, using a wire) based on the occupational analysis. When eight male university students (mean age $24.1{\pm}2.5$ years) conducted the eight flower arrangement tasks, range of motion for joints and muscle activation of upper limb were measured by a 3D motion analyzer and electromyography, respectively. Based on the results of the range of motion and muscle activation of upper limb, horticultural therapy programs using flower arrangement tasks (total 33 sessions) for improving upper limb function of the patients with stroke was conducted at a rehabilitation hospital, Seoul, South Korea and then the range of motion, grip strength, and upper limb function of the patients were tested. Among the eight flower arrangement tasks, cutting 1, winding, and bending 1 induced the highest value for the range of motion in joints of shoulder, elbow, and wrist, respectively (P < 0.001). In terms of muscle activation, eight flower arrangement tasks performed in this study showed various patterns of muscle activation and several muscles were simultaneously used for each task (P < 0.001). In addition, thickness and length of the materials used in a task had a prominent effect on the range of motion for joints and muscle activation of upper limb (P < 0.001). The stroke patients had positive effects for their range of motion of upper limb (shoulder, forearm, and elbow), grip strength, and overall upper limb function through the horticultural therapy program. Thus, this study suggested that flower arrangement tasks would be a potential horticultural activity for physical rehabilitation program. It would be interesting to apply a customized horticultural therapy program using flower arrangement tasks according to the symptoms of patient for physical rehabilitation.

Analysis of Lower Extremity Joint Moment and Power during Squat in Female Patients with Genu Varum

  • Jeong, Ji-Man;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.407-412
    • /
    • 2016
  • Objective: The aim of this study was to analyze the net joint moment and joint power of the lower extremity during squat in female patients with genu varum. Method: Eight female patients with genu varum were asked to do regular squats, and their net joint moment and joint power were compared to those of another eight female participants with straight legs. Their video recordings and ground reaction force data were analyzed to be used as a theoretical evidence of squatting effectively for female patients with genu varum. Results: Squats had a higher impact on internal knee joint rotation and ankle joint flexion moments in the genu varum group than in the straight leg group due to their weak and short hip joint muscles. Conclusion: There is a need to develop a squat movement that is appropriate for women with genu varum in order to distribute overload efficiently among the hip, knee, and ankle joints and to strengthen the muscles in a balanced way.

HISTOPATHOLOGIC CHANGES OF THE CRANIOMANDIBULAR JOINT ACCORDING TO THE AMOUNT OF DISTRACTION AFTER 6 WEEKS OF DISTRACTION OSTEOGENESIS IN RABBITS (가토에서 하악골 신연 6주후 신연양에 따른 두개하악관절의 조직병리학적 변화)

  • Kim, Hyun-Ho;Kim, Su-Gwan;Lim, Sung-Chul;Chung, Hae-Man;Kim, Sang-Gon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • The purpose of this study is to observe histopathologic changes in the bilateral craniomandibular joints after allowing 6 weeks of consolidation by varying the amount of distraction in rabbit mandible. Eight rabbits weighing about 2 to 3 kg were used. After corticotomy was performed on the left mandibular body between the first premolar and the second premolar region, a unilateral fixation device was placed. Then, a 7-day period was allowed without distraction of the device. The mandible was lengthened 0.5 mm/day. Corticotomy and lengthening of mandible were not performed in control group. After the completion of the lengthening process, a 6-week-consolidation period was allowed. Then, the rabbits were sacrificed, and histologic examination of the craniomandibular joints was performed. Proliferative changes were observed in the craniomandibular joints in all groups. With the increasing amount of distraction, hypertrophy of the cartilage layer became more severe, bone formed was dense and enchondral ossification was clearly shown in subchondral bone. Hypertrophy of the cartilage layer was also seen in the non-distracted side as the distracted side in the experimental group. These results indicate that when physical force is applied constantly to joints, the proliferation of articular cartilage and bone formation are present. When more than 6 weeks of consolidation period is allowed at the time of performing distraction for more than 5 mm, articular changes, especially, in the contralateral side should also be noted.

Experimental study of welding effect on grade S690Q high strength steel butt joint

  • Chen, Cheng;Chiew, Sing Ping;Zhao, Mingshan;Lee, Chi King;Fung, Tat Ching
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.401-417
    • /
    • 2021
  • This study experimentally reveals the influence of welding on grade S690Q high strength steel (HSS) butt joints from both micro and macro levels. Total eight butt joints, taking plate thickness and welding heat input as principal factors, were welded by shielded metal arc welding. In micro level, the microstructure transformations of the coarse grain heat affected zone (CGHAZ), the fine grain heat affected zone (FGHAZ) and the tempering zone occurred during welding were observed under light optical microscopy, and the corresponding mechanical performance of those areas were explored by micro-hardness tests. In macro level, standard tensile tests were conducted to investigate the impacts of welding on tensile behaviour of S690Q HSS butt joints. The test results showed that the main microstructure of S690Q HSS before welding was tempered martensite. After welding, the original microstructure was transformed to granular bainite in the CGHAZ, and to ferrite and cementite in the FGHAZ. For the tempering zone, some temper martensite decomposed to ferrite. The performed micro-hardness tests revealed that an obvious "soft layer" occurred in HAZ, and the HAZ size increased as the heat input increased. However, under the same level of heat input, the HAZ size decreased as the plate thickness increased. Subsequent coupon tensile tests found that all joints eventually failed within the HAZ with reduced tensile strength when compared with the base material. Similar to the size of the HAZ, the reduction of tensile strength increased as the welding heat input increased but decreased as the thickness of the plate increased.

The Effects of Virtual Reality Training with Upper Limb Functional Electrical Stimulation to Improve on Muscle Strength, AROM, and Function of Upper Limb Joints in Patient with Chronic Stroke (가상현실훈련과 위팔 기능적 전기자극이 만성 뇌졸중 환자의 위팔 근력, 능동관절운동과 기능에 미치는 효과)

  • Kim, Donghoon;Kim, Kyunghun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.2
    • /
    • pp.211-220
    • /
    • 2020
  • Purpose : The purpose of the present study is to examine the effects of VR training with FES on improving the muscle strength, AROM, and function of the upper limb joints in patients with chronic stroke. Methods : The present study makes use of a pre-post control group design. Thirty patients with chronic stroke were randomly assigned to two groups according to treatment method - the VRFES group and the control group. The VRFES group received 15 minutes of VR training and 15 minutes of FES treatment. The control group received 15 minutes of conservative physical therapy and 15 minutes of VR training. All subjects received 30 minutes of treatment, three times a week, for eight weeks, which amounted to 24 sessions of training. The muscle strength, AROM, and function of the upper extremities were measured before the training and eight weeks after. Upper limb muscle strength was tested using the Digital Manual Muscle Tester while AROM was measured using the Digital Dual Inclinometer. The clinical assessment tools for upper extremity function included the use of the Manual Function Test and the Jebsen-Taylor Hand Function Test. Results : Both groups exhibited great improvements in muscle strength and upper extremity function during the intervention period. The VRFES group exhibited a significant difference in muscle strength, AROM, and function of the upper extremities in comparison with the control group(p<.05). Our results reveal that VRFES is more effective for the muscle strength, AROM, and function of the upper extremities in patients with chronic stroke. Conclusion : VRFES treatment will be used as an important intervention for improving the muscle strength, AROM, and function of the upper extremities in patients with chronic stroke and achieving the functional recovery of the upper extremities.

Experimental Assessment of Bolted Single Lap Joint Strength for Laminates in Advanced Composite Materials (첨단복합재료 적층판의 볼트단일접합 강도 시험적 평가)

  • Lee, Myoung Keon;Lee, Jeong Won;Yoon, Dong Hyun;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.983-989
    • /
    • 2017
  • This paper presents the bearing strength for laminates in advanced composite materials in bolted joints. Bolted single lap joint tests were experimentally investigated with respect to stabilized and unstabilized lap joints. Stabilized bolted single lap joints refer to joints with out-of-plane rotational constraints. Unstabilized bolted single lap joints refer to joints with absence of out-of-plane deflection constraints. The bearing strength values of laminates in the bolted joint showed that the percentages of ply angle for 0, 45, -45, and 90 degrees were not affected. The bearing strength value in the unstabilized bolted joint was smaller than the bearing strength value in the stabilized bolted joint because of the influence of the out-of-plane behavior. The composite material studied in this paper is a carbon/epoxy unidirectional (UD) tape prepreg cured at $177^{\circ}C(350^{\circ}F)$. In the laminate reference system, the standard angles of 0, 45, -45, and 90 degrees were used for ply orientation within the laminate. A total of 112 bolted single lap joint tests were conducted on specimens from eight distinct laminates. The ASTM-D-5961M standards were adhered to for the stabilized and unstabilized bolted single lap joint tests.