• 제목/요약/키워드: eigenvalue problem.

검색결과 549건 처리시간 0.025초

전단변형을 고려한 적층복합 I형 박벽보의 좌굴해석 (Buckling Analysis of Thin-Walled Laminated Composite I-Beams Including Shear Deformation)

  • 백성용;이승식;박용명
    • 한국강구조학회 논문집
    • /
    • 제18권5호
    • /
    • pp.575-584
    • /
    • 2006
  • 본 연구에서는 압축력을 받는 적층복합 I형 박벽보의 좌굴해석을 위한 전단변형을 고려한 유한요소 모델을 제안한다. 직교좌표계에 근거로 변위장은 1차 전단변형을 고려한 보 이론을 사용하여 정의된다. 유도된 요소는 휨 전단변형과 ? 비틂에 의한 영향을 고려한다. 지배방정식을 풀기 위하여 본 유한요소에서는 2절점, 3절점, 4절점의 세 가지 보요소를 제안하였다. 선형 좌굴문제를 풀기 위하여 이동기법을 의한 역방향 반복법을 사용하였다. 적층복합 I형 박벽보의 좌굴거동에 전단 유연성과 파이버 방향성의 중요도를 조사하기 위하여 매개변수 해석을 수행하였다. 본 연구의 전단변형을 고려한 모델은 다른 연구자의 수치해석 결과와 유한요소해에 잘 일치하는 것을 확인하였다.

Applying TID-PSS to Enhance Dynamic Stability of Multi-Machine Power Systems

  • Mohammadi, Ramin Shir;Mehdizadeh, Ali;Kalantari, Navid Taghizadegan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권5호
    • /
    • pp.287-297
    • /
    • 2017
  • Novel power system stabilizers (PSSs) have been proposed to effectively dampen low frequency oscillations (LFOs) in multi-machine power systems and have attracted increasing research interest in recent years. Due to this attention, recently, fractional order controllers (FOCs) have found new applications in power system stability issues. Here, a tilt-integral-derivative power system stabilizer (TID-PSS) is proposed to enhance the dynamic stability of a multi-machine power system by providing additional damping to the LFOs. The TID is an extended version of the classical proportional-integral-derivative (PID) applying fractional calculus. The design of the proposed three-parameter tunable TID-PSS is systematized as a nonlinear time domain optimization problem in which the tunable parameters are adjusted concurrently using a modified group search optimization (MGSO) algorithm. An integral of the time multiplied squared error (ITSE) performance index is considered as the objective function. The proposed stabilizer is simulated in the MATLAB/SIMULINK environment using the FOMCON toolbox and the dynamic performance is evaluated on a 3-machine 6-bus power system. The TID-PSS is compared with both classical PID-PSS (PID-PSS) and conventional PSS (CPSS) using eigenvalue analysis and time domain simulations. Sensitivity analyses are performed to assess the robustness of the proposed controller against large changes in system loading conditions and parameters. The results indicate that the proposed TID-PSS provides the better dynamic performance and robustness compared with the PID-PSS and CPSS.

An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities

  • Benadouda, Mourad;Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.255-265
    • /
    • 2017
  • In this paper, an efficient shear deformation theory is developed for wave propagation analysis in a functionally graded beam. More particularly, porosities that may occur in Functionally Graded Materials (FGMs) during their manufacture are considered. The proposed shear deformation theory is efficient method because it permits us to show the effect of both bending and shear components and this is carried out by dividing the transverse displacement into the bending and shear parts. Material properties are assumed graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents; but the rule of mixture is modified to describe and approximate material properties of the functionally graded beams with porosity phases. The governing equations of the wave propagation in the functionally graded beam are derived by employing the Hamilton's principle. The analytical dispersion relation of the functionally graded beam is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions, the depth of beam, the number of wave and the porosity on wave propagation in functionally graded beam are discussed in details. It can be concluded that the present theory is not only accurate but also simple in predicting the wave propagation characteristics in the functionally graded beam.

Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory

  • Ayache, Belqassim;Bennai, Riadh;Fahsi, Bouazza;Fourn, Hocine;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.369-382
    • /
    • 2018
  • A free vibration analysis and wave propagation of functionally graded porous beams has been presented in this work using a high order hyperbolic shear deformation theory. Unlike other conventional shear deformation theories, a new displacement field that introduces indeterminate integral variables has been used to minimize the number of unknowns. The constituent materials of the beam are assumed gradually variable along the direction of height according to a simple power law distribution in terms of the volume fractions of the constituents. The variation of the pores in the direction of the thickness influences the mechanical properties. It is therefore necessary to predict the effect of porosity on vibratory behavior and wave velocity of FG beams in this study. A new function of the porosity factor has been developed. Hamilton's principle is used for the development of wave propagation equations in the functionally graded beam. The analytical dispersion relationship of the FG beam is obtained by solving an eigenvalue problem. Illustrative numerical examples are given to show the effects of volume fraction distributions, beam height, wave number, and porosity on free vibration and wave propagation in a functionally graded beam.

유연한 지지 구조와 유체 동압 베어링으로 지지되는 HDD의 회전 유연 디스크-스핀들 시스템에 대한 유한 요소 고유 진동 해석 (Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Supported by Hydro Dynamic Bearings and Flexible Supporting Structures In a HDD)

  • 한재혁;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.572-578
    • /
    • 2003
  • The free vibration of a spinning flexible disk-spindle system supported by hydro dynamic bearings in a HDD is analyzed by FEM. The spinning flexible disk is described using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. It is discretized by annular sector element. The rotating spindle which includes the clamp, hub, permanent magnet and yoke, is modeled by Timoshenko beam including the gyroscopic effect. The flexible supporting structure with a complex shape which includes stator core, housing, base plate, sleeve and thrust pad is modeled by using a 4-node tetrahedron element with rotational degrees of freedom to satisfy the geometric compatibility. The dynamic coefficients of HDB are calculated from the HDB analysis program, which solves the perturbed Raynolds equation using FEM. Introducing the virtual nodes and the rigid link constraints defined in the center of HDB, beam elements of the shaft are connected to the solid elements of the sleeve and thrust pad through the spring and damper element. The global matrix equation obtained by assembling the finite element equations of each substructure is transformed to the state-space matrix-vector equation, and the associated eigenvalue problem is solved by using the restarted Arnoldi iteration method. The validity of this research is verified by comparing the numerical results of the natural frequencies with the experimental ones. Also the effect of supporting structures to the natural modes of the total HDD system is rigorously analyzed.

  • PDF

박벽보-기둥 요소의 개선된 정적 요소강성행렬 (Improved Static Element Stiffness Matrix of Thin-Walled Beam-Column Elements)

  • 윤희택;김남일;김문영;길흥배
    • 한국강구조학회 논문집
    • /
    • 제14권4호
    • /
    • pp.509-518
    • /
    • 2002
  • 비대칭 단면을 갖는 박벽보의 3차원 휨-배틂 좌굴해석 및 정적해석을 위하여, 평형방정식과 힘-변위 관계식을 이용하여 엄밀한 정적요소강성행렬을 수치적으로 산정하는 개선된 기법을 제시한다. 먼저 14개의 변위피라미터를 도입하여 고차의 연립미분방정식을 1차 연립미분방정식으로 변환하고, 복소수 영역에서 선형고유치문제를 해를 구한다. 이 경우 동적강성행렬을 산정하는 경우와는 달리 복수개의 '영'의 고유치가 발생한다. 이에 대응하는 변위피라미터의 다항식을 항등식 조거능로부터 구하고, 이를 고유치와 결합하여 박벽보 요소의 엄밀한 처짐함수를 구한다. 이렇게 구한 엄밀한 처짐함수에 재단력-변위 관계식을 적용하여 세가지 초기단면력 조건에 대응하는 엄밀한 정적요소강성행렬을 산정한다. 본 방법의 타당성을 보이기 위하여 비대칭 박벽보의 좌굴하중과 처짐값을 계산하고 해석해나 ABAQUS 쉘요소를 이용한 해석결과 및 직선보요소를 사용한 유한요소해의 결과와 비교, 검증한다.

회전 디스크-스핀들, 액츄에이터와 지지구조의 유연성을 고려한 하드 디스크 드라이브의 고유 및 강제 진동 해석 (Free and Forced Vibration Analysis of a Hard Disk Drive Considering the Flexibility of Spinning Disk-Spindle, Actuator and Supporting Structure)

  • 서찬희;장건희;이호성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.660-665
    • /
    • 2006
  • This paper presents a finite element method to analyze the free and forced vibration of a hard disk drive (HDD) considering the flexibility of a spinning disk-spindle with fluid dynamic bearings (FDBs), an actuator with pivot bearings, an air bearing between head-disk interface and the base with complicated geometry. Finite element equation of each component is consistently derived with the satisfaction of the geometric compatibility of the internal boundary between each component. The spinning disk, hub and FDBs are modeled by annular sector elements, beam elements and stiffness and damping elements, respectively. The actuator am, E-block, suspension and base plate are modeled by tetrahedral elements. The pivot bearing in the actuator and the air bearing between head-disk interfaces are modeled by the stiffness element with five degrees of freedom and the axial stiffness, respectively. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem with the restarted Arnoldi iteration method. Modal and shock testing are performed to show that the proposed method well predicts the vibration characteristics of a HDD.

  • PDF

유체에 잠긴 원통형 실린더의 파동 분산 특성 (Dispersion Characteristics of Cylindrical Shells Submerged in the Fluid)

  • 정병규;홍진숙;유정수;정의봉;신구균
    • 한국소음진동공학회논문집
    • /
    • 제25권8호
    • /
    • pp.575-582
    • /
    • 2015
  • This paper deals with the dispersion relation of the waves sustained in a cylindrical shell submerged in the fluid. The waveguide finite method and the boundary element method are used to predict the dispersion characteristic of the cylindrical shell. The dispersion diagram of the cylinder is estimated from the eigenvalue problem and the forced vibration response. It follows that the water-loading leads to the decrease of the cut-on frequencies and the phase speeds of the bending waves. On the contrary, the longitudinal waves and the torsional waves are hardly affected by the fluid, and therefore the order of the cut-on frequencies of the waves is changed. The acoustic dispersion diagram is also estimated from the forced acoustic response to identify the characteristics of the wave radiated to the fluid. It follows that the acoustic waves on and near the surface of the cylinder are the same as those in the structure. But at the far field the acoustic waves caused by subsonic waves e.g., the bending waves disappear as the increase of the distance. Conclusively, the characteristics of waves in cylindrical shells are significantly affected by water-loading in terms of the cut-on frequency, the wave speed, the order of the cut-on and radiation.

공분산 및 신호관리를 이용한 RF탐색기 시선각 변화율 추정기법 (RF Seeker LOS Rate Estimation Method using Covariance and Signal Management)

  • 문관영;전병을
    • 한국항공우주학회지
    • /
    • 제40권4호
    • /
    • pp.292-299
    • /
    • 2012
  • 칼만 필터를 이용하여 RF 탐색기의 시선각 변화율 추정을 수행하였다. 김발형 탐색기의 모델링을 기반으로 칼만필터를 설계하였다. 필터 설계 시 주요한 인자인 공정 잡음 및 측정 잡음의 특성에 대해 살펴보았으며, RF 탐색기의 신호 특성에 맞는 측정 잡음치를 선정하여 필터링을 수행하였다. 측정 잡음관리를 위해 SNR 및 관련 신호를 이용하였으며, 공정 잡음에 따른 필터의 민감도 확인을 위해 대수적 방식을 사용하였다. 일식 등으로 탐색기 신호가 없는 경우 선형 해석을 통해 필터의 안정도를 분석하였다. 수치 시뮬레이션을 통해 제안된 시선각 변화율 추정기법의 타당성을 검토하였다.

Exact calculation of natural frequencies of repetitive structures

  • Williams, F.W.;Kennedy, D.;Wu, Gaofeng;Zhou, Jianqing
    • Structural Engineering and Mechanics
    • /
    • 제4권5호
    • /
    • pp.553-568
    • /
    • 1996
  • Finite element stiffness matrix methods are presented for finding natural frequencies (or buckling loads) and modes of repetitive structures. The usual approximate finite element formulations are included, but more relevantly they also permit the use of 'exact finite elements', which account for distributed mass exactly by solving appropriate differential equations. A transcendental eigenvalue problem results, for which all the natural frequencies are found with certainty. The calculations are performed for a single repeating portion of a rotationally or linearly (in one, two or three directions) repetitive structure. The emphasis is on rotational periodicity, for which principal advantages include: any repeating portions can be connected together, not just adjacent ones; nodes can lie on, and members along, the axis of rotational periodicity; complex arithmetic is used for brevity of presentation and speed of computation; two types of rotationally periodic substructures can be used in a multi-level manner; multi-level non-periodic substructuring is permitted within the repeating portions of parent rotationally periodic structures or substructures and; all the substructuring is exact, i.e., the same answers are obtained whether or not substructuring is used. Numerical results are given for a rotationally periodic structure by using exact finite elements and two levels of rotationally periodic substructures. The solution time is about 500 times faster than if none of the rotational periodicity had been used. The solution time would have been about ten times faster still if the software used had included all the substructuring features presented.