• 제목/요약/키워드: eigenvalue method

검색결과 739건 처리시간 0.022초

On lower bounds of eigenvalues for self adjoint operators

  • Lee, Gyou-Bong
    • 대한수학회지
    • /
    • 제31권3호
    • /
    • pp.477-492
    • /
    • 1994
  • For the eigenvalue problem of $Au = \lambda u$ where A is considered as a semi-bounded self-adjoint operator on a Hilbert space, we are used to apply two complentary methods finding upper bounds and lower bounds to the eigenvalues. The most popular method for finding upper bounds may be the Rayleigh-Ritz method which was developed in the 19th century while a method for computing lower bounds may be the method of intermediate eigenvalue problems which has been developed since 1950's. In the method of intermediate eigenvalue problems (IEP), we consider the original operator eigenvalue problem as a perturbation of a simpler, resolvable, self-adjoint eigenvalue problem, called a base problem, that gives rough lower bounds.

  • PDF

복합마디방법의 고유치문제에 응용 (An Application of the Multigrid Method to Eigenvalue problems)

  • 이규봉;김성수;성수학
    • 자연과학논문집
    • /
    • 제8권2호
    • /
    • pp.9-11
    • /
    • 1996
  • Dirichlet 경계조건을 갖는 Laplace 고유치방정식의 고유치를 구하는 데 복합마디방법을 이용하였다. 유한차분법을 적용하여 행렬 고유치방정식을 만들고 이 방정식의 고유치를 구하기 위하여 역거듭제곱방법과 전체복합마디법을 사용하였다. 그 결과 고유치를 기존의 방법보다 더욱 빠르게 구할 수 있었다.

  • PDF

The structured multiparameter eigenvalue problems in finite element model updating problems

  • Zhijun Wang;Bo Dong;Yan Yu;Xinzhu Zhao;Yizhou Fang
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.493-500
    • /
    • 2023
  • The multiparameter eigenvalue method can be used to solve the damped finite element model updating problems. This method transforms the original problems into multiparameter eigenvalue problems. Comparing with the numerical methods based on various optimization methods, a big advantage of this method is that it can provide all possible choices of physical parameters. However, when solving the transformed singular multiparameter eigenvalue problem, the proposed method based on the generalised inverse of a singular matrix has some computational challenges and may fail. In this paper, more details on the transformation from the dynamic model updating problem to the multiparameter eigenvalue problem are presented and the structure of the transformed problem is also exposed. Based on this structure, the rigorous mathematical deduction gives the upper bound of the number of possible choices of the physical parameters, which confirms the singularity of the transformed multiparameter eigenvalue problem. More importantly, we present a row and column compression method to overcome the defect of the proposed numerical method based on the generalised inverse of a singular matrix. Also, two numerical experiments are presented to validate the feasibility and effectiveness of our method.

ENHANCING EIGENVALUE APPROXIMATION WITH BANK-WEISER ERROR ESTIMATORS

  • Kim, Kwang-Yeon
    • Korean Journal of Mathematics
    • /
    • 제28권3호
    • /
    • pp.587-601
    • /
    • 2020
  • In this paper we propose a way of enhancing eigenvalue approximations with the Bank-Weiser error estimators for the P1 and P2 conforming finite element methods of the Laplace eigenvalue problem. It is shown that we can achieve two extra orders of convergence than those of the original eigenvalue approximations when the corresponding eigenfunctions are smooth and the underlying triangulations are strongly regular. Some numerical results are presented to demonstrate the accuracy of the enhanced eigenvalue approximations.

A multilevel in space and energy solver for multigroup diffusion eigenvalue problems

  • Yee, Ben C.;Kochunas, Brendan;Larsen, Edward W.
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1125-1134
    • /
    • 2017
  • In this paper, we present a new multilevel in space and energy diffusion (MSED) method for solving multigroup diffusion eigenvalue problems. The MSED method can be described as a PI scheme with three additional features: (1) a grey (one-group) diffusion equation used to efficiently converge the fission source and eigenvalue, (2) a space-dependent Wielandt shift technique used to reduce the number of PIs required, and (3) a multigrid-in-space linear solver for the linear solves required by each PI step. In MSED, the convergence of the solution of the multigroup diffusion eigenvalue problem is accelerated by performing work on lower-order equations with only one group and/or coarser spatial grids. Results from several Fourier analyses and a one-dimensional test code are provided to verify the efficiency of the MSED method and to justify the incorporation of the grey diffusion equation and the multigrid linear solver. These results highlight the potential efficiency of the MSED method as a solver for multidimensional multigroup diffusion eigenvalue problems, and they serve as a proof of principle for future work. Our ultimate goal is to implement the MSED method as an efficient solver for the two-dimensional/three-dimensional coarse mesh finite difference diffusion system in the Michigan parallel characteristics transport code. The work in this paper represents a necessary step towards that goal.

RCF 기법을 이용한 SVC의 주기적 스위칭 동작에 의한 전력계통 진동모드 감도해석 (Sensitivity Analysis of Power System Oscillation Modes Induced by Periodic Switching Operations of SVC by the RCF Method)

  • 김덕영
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.363-368
    • /
    • 2008
  • In this paper, the Resistive Companion Form(RCF) analysis method is applied to analyze small signal stability of power systems including thyristor controlled FACTS equipments such as SVC. The eigenvalue sensitivity analysis algorithm in discrete systems based on the RCF analysis method is presented and applied to the power system including SVC. As a result of simulation, the RCF analysis method is proved very effective to precisely calculate the variations of eigenvalues or newly generated unstable oscillation modes after periodic switching operations of SVC. Also the eigenvalue sensitivity analysis method based on the RCF analysis method enabled to precisely calculate eigenvalue sensitivity coefficients of controller parameters about the dominant oscillation mode after periodic switching operations in discrete systems. These simulation results are different from those of the conventional continuous system analysis method such as the state space equation and proved that the RCF analysis method is very effective to analyze the discrete power systems including periodically operated switching equipments such as SVC.

부분 구조물 합성으로 이루어진 고유치 문제 해석 (Partitioned structural eigenvalue analysis)

  • 정의일;나혜중;노석홍;전두환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.117-119
    • /
    • 2005
  • For large structural eigen-analysis, the whole structure is divided into some partitioned structures and through synthesis of partitioned structural model the eigen-data of structure can be obtained. In that case, eigenvalue problem consists of semidefinite mass matrix form because of displacement constraint condition. In this work the eigenvalue problem is considered by means of several method, determinant search and null space reduction method.

  • PDF

발전기 제어장치와 TCSC를 포함하는 이산 전력시스템의 고유치 감도해석 (Eigenvalue Sensitivity Analysis of Discrete Power Systems Including Generator Controllers and TCSC)

  • 김덕영
    • 조명전기설비학회논문지
    • /
    • 제24권12호
    • /
    • pp.193-200
    • /
    • 2010
  • In this paper, the eigenvalue sensitivity analysis is calculated in the power system which is including both generator controllers such as Exciter, PSS and thyristor controlled FACTS devices in transmission lines such as TCSC. Exciter and PSS are continuously operating controllers but TCSC has a switching device which operates non-continuously. To analyze both continuous and non-continuous operating equipments, the RCF method one of the numerical analysis method in discrete time domain is applied using discrete models of the power system. Also the eigenvalue sensitivity calculation algorithm using state transition equations in discrete time domain is devised and applied to a sampled system. As a result of simulation, the eigenvalue sensitivity coefficients calculated using discrete system models in discrete time domain are changed periodically and showed different values compared to those of continuous system model in time domain by the effect of periodic switching operations of TCSC.

Interval finite element method based on the element for eigenvalue analysis of structures with interval parameters

  • Yang, Xiaowei;Chen, Suhuan;Lian, Huadong
    • Structural Engineering and Mechanics
    • /
    • 제12권6호
    • /
    • pp.669-684
    • /
    • 2001
  • A new method for solving the uncertain eigenvalue problems of the structures with interval parameters, interval finite element method based on the element, is presented in this paper. The calculations are done on the element basis, hence, the efforts are greatly reduced. In order to illustrate the accuracy of the method, a continuous beam system is given, the results obtained by it are compared with those obtained by Chen and Qiu (1994); in order to demonstrate that the proposed method provides safe bounds for the eigenfrequencies, an undamping spring-mass system, in which the exact interval bounds are known, is given, the results obtained by it are compared with those obtained by Qiu et al. (1999), where the exact interval bounds are given. The numerical results show that the proposed method is effective for estimating the eigenvalue bounds of structures with interval parameters.

임의 형상 고정단 평판의 고정밀도 고유치 해석을 위한 파동 함수 기반 무요소법 (Meshless Method Based on Wave-type Function for Accurate Eigenvalue Analysis of Arbitrarily Shaped, Clamped Plates)

  • 강상욱
    • 한국소음진동공학회논문집
    • /
    • 제26권5호
    • /
    • pp.602-608
    • /
    • 2016
  • The paper proposes a practical meshless method for the free vibration analysis of clamped plates having arbitrary shapes by extending the non-dimensional dynamic influence function (NDIF) method, which was developed by the author in 1999. In the proposed method, the domain and boundary of the plate of interest are discretized using only nodes without elements unlike FEM and the system matrices are obtained by making domain nodes and boundary nodes satisfy the governing differential equation and boundary conditions, respectively. However, since the above system matrices are not square ones, the problem of free vibrations of clamped plates is not reduced to an algebraic eigenvalue problem. An additional theoretical treatment is considered to produce an algebraic eigenvalue problem. It is revealed from case studies that the proposed method is valid and accurate.