• Title/Summary/Keyword: eigenvalue approaches

Search Result 21, Processing Time 0.027 seconds

SOME RESULTS OF EVOLUTION OF THE FIRST EIGENVALUE OF WEIGHTED p-LAPLACIAN ALONG THE EXTENDED RICCI FLOW

  • Azami, Shahroud
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.953-966
    • /
    • 2020
  • In this article we study the evolution and monotonicity of the first non-zero eigenvalue of weighted p-Laplacian operator which it acting on the space of functions on closed oriented Riemannian n-manifolds along the extended Ricci flow and normalized extended Ricci flow. We show that the first eigenvalue of weighted p-Laplacian operator diverges as t approaches to maximal existence time. Also, we obtain evolution formulas of the first eigenvalue of weighted p-Laplacian operator along the normalized extended Ricci flow and using it we find some monotone quantities along the normalized extended Ricci flow under the certain geometric conditions.

Advances in solution of classical generalized eigenvalue problem

  • Chen, P.;Sun, S.L.;Zhao, Q.C.;Gong, Y.C.;Chen, Y.Q.;Yuan, M.W.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.211-230
    • /
    • 2008
  • Owing to the growing size of the eigenvalue problem and the growing number of eigenvalues desired, solution methods of iterative nature are becoming more popular than ever, which however suffer from low efficiency and lack of proper convergence criteria. In this paper, three efficient iterative eigenvalue algorithms are considered, i.e., subspace iteration method, iterative Ritz vector method and iterative Lanczos method based on the cell sparse fast solver and loop-unrolling. They are examined under the mode error criterion, i.e., the ratio of the out-of-balance nodal forces and the maximum elastic nodal point forces. Averagely speaking, the iterative Ritz vector method is the most efficient one among the three. Based on the mode error convergence criteria, the eigenvalue solvers are shown to be more stable than those based on eigenvalues only. Compared with ANSYS's subspace iteration and block Lanczos approaches, the subspace iteration presented here appears to be more efficient, while the Lanczos approach has roughly equal efficiency. The methods proposed are robust and efficient. Large size tests show that the improvement in terms of CPU time and storage is tremendous. Also reported is an aggressive shifting technique for the subspace iteration method, based on the mode error convergence criteria. A backward technique is introduced when the shift is not located in the right region. The efficiency of such a technique was demonstrated in the numerical tests.

M-ary Multitrack Run-length Limited Codes for Optical Storage Systems (광기록저장장치를 위한 M-ary 다중트랙 RLL 코드)

    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6A
    • /
    • pp.888-893
    • /
    • 1999
  • This paper introduces M-ary multitrack run-length (d.k) constrained codes for optical storage systems. We calculate capacities and densities of the codes. We have driven a general form of the state transition matrix for M-ary multitrack (d,k) codes. Using the largest eigenvalue of the transition matrix, we calculate the capacity and density. The capacity approaches to the limit with a small k constraint compared to single-track codes.

  • PDF

Simplified formulations for flutter instability analysis of bridge deck

  • Vu, Tan-Van;Kim, Young-Min;Han, Tong-Seok;Lee, Hak-Eun
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.359-381
    • /
    • 2011
  • This paper deals with the flutter instability problem of flexible bridge decks in the framework of bimodal-coupled aeroelastic bridge system analysis. Based on the analysis of coefficients of the polynomials deduced from the singularity conditions of an integral wind-structure impedance matrix, a set of simplified formulations for calculating the critical wind velocity and coupled frequency are presented. Several case studies are discussed and comparisons with available approximated approaches are made and presented, along with a conventional complex eigenvalue analysis and numerical results. From the results, it is found that the formulas that are presented in this study are applicable to a variety of bridge cross sections that are not only prone to coupled-mode but also to single-mode-dominated flutter.

AN UNFOLDING OF DEGENERATE EQUILIBRIA WITH LINEAR PART $\chi$'v= y, y' = 0

  • Han, Gil-Jun
    • The Pure and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.61-69
    • /
    • 1997
  • In this paper, we study the dynamics of a two-parameter unfolding system $\chi$' = y, y' = $\beta$y+$\alpha$f($\chi\alpha\pm\chiy$+yg($\chi$), where f($\chi$,$\alpha$) is a second order polynomial in $\chi$ and g($\chi$) is strictly nonlinear in $\chi$. We show that the higher order term yg($\chi$) in the system does not change qulitative structure of the Hopf bifurcations near the fixed points for small $\alpha$ and $\beta$ if the nontrivial fixed point approaches to the origin as $\alpha$ approaches zero.

  • PDF

Form-Finding of Tensegrity Structures based on Eigenvalue Formulation (고유치문제로 정식화된 텐세그러티 구조물의 형상탐색)

  • Jung, Mi-Roo;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.87-94
    • /
    • 2010
  • Form-Finding of tensegrity structures by eigenvalue problem is presented, In ardor to maintain the structures stable, "Form-Finding" should be performed. The types of analytical methods are known to solve this phenomenon: One is to use force density method, and the other is to apply so called, generalized inverse method. In this paper, new form finding methods are presented to obtain the self-equilibrium stress of the tensegrity structures. This method is based on the equilibrium equation of the all of the joint and the governing equation is formulated as eigonvalue problem. In order to verify this approach, numerical example(tensegrity structures) are compared with others calculated by previous methods. The solution by present method is shown identical results. Furthermore, the developed process to find the results is more efficient than previous approaches.

  • PDF

Free vibration of a rectangular plate with an attached three-degree-of-freedom spring-mass system

  • Febbo, M.;Bambill, D.V.;Rossi, R.E.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.637-654
    • /
    • 2011
  • The present paper studies the variation of the natural frequencies and mode shapes of rectangular plates carrying a three degree-of-freedom spring-mass system (subsystem), when the subsystem changes (stiffness, mass, moment of inertia, location). An analytical approach based on Lagrange multipliers as well as a finite element formulation are employed and compared. Numerically reliable results are presented for the first time, illustrating the convenience of using the present analytical method which requires only the solution of a linear eigenvalue problem. Results obtained through the variation of the mass, stiffness and moment of inertia of the 3-DOF system can be understood under the effective mass concept or Rayleigh's statement. The analysis of frequency values of the whole system, when the 3-DOF system approaches or moves away from the center, shows that the variations depend on each particular mode of vibration. When the 3-DOF system is placed in the center of the plate, "new" modes are found to be a combination of the subsystem's modes (two rotations, traslation) and the bare plate's modes that possess the same symmetry. This situation no longer exists as the 3-DOF system moves away from the center of the plate, since different bare plate's modes enable distinct motions of the 3-DOF system contributing differently to the "new' modes as its location is modified. Also the natural frequencies of the compound system are nearly uncoupled have been calculated by means of a first order eigenvalue perturbation analysis.

Structural Topology Optimization for the Natural Frequency of a Designated Mode

  • Lim, O-Kaung;Lee, Jin-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.306-313
    • /
    • 2000
  • The homogenization method and the density function method are common approaches to evaluate the equivalent material properties for design cells composed of matter and void. In this research, using a new topology optimization method based on the homogenized material with a penalty factor and the chessboard prevention strategy, we obtain the optimal layout of a structure for the natural frequency of a designated mode. The volume fraction of nodes of each finite element is chosen as the design variable and a total material usage constraint is imposed. In this paper, the subspace method is used to evaluate the eigenvalue and its corresponding eigenvector of the structure for the designated mode and the recursive quadratic programming algorithm, PLBA algorithm, is used to solve the topology optimization problem.

  • PDF

Power System Sensitivity Analysis for Probabilistic Small Signal Stability Assessment in a Deregulated Environment

  • Dong Zhao Yang;Pang Chee Khiang;Zhang Pei
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.355-362
    • /
    • 2005
  • Deregulations and market practices in power industry have brought great challenges to the system planning area. In particular, they introduce a variety of uncertainties to system planning. New techniques are required to cope with such uncertainties. As a promising approach, probabilistic methods are attracting more and more attentions by system planners. In small signal stability analysis, generation control parameters play an important role in determining the stability margin. The objective of this paper is to investigate power system state matrix sensitivity characteristics with respect to system parameter uncertainties with analytical and numerical approaches and to identify those parameters have great impact on system eigenvalues, therefore, the system stability properties. Those identified parameter variations need to be investigated with priority. The results can be used to help Regional Transmission Organizations (RTOs) and Independent System Operators (ISOs) perform planning studies under the open access environment.

Preconditioned Compressible Navier- Stokes Algorithm for Low Mach Number Flows (예조건화 압축성 알고리즘에 의한 저마하수 유동장 해석기법)

  • Ko Hyun;Yoon Woong-Sup
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.35-42
    • /
    • 1998
  • Time marching algorithms applied to compressible Navier-Stokes equation have a convergence problem at low Mach number. It is mainly due to the eigenvalue stiffness and pressure singularity as Mach number approaches to zero. Among the several methods to overcome the shortcomings of time marching scheme, time derivative preconditioning method have been used successfully. In this numerical analysis, we adopted a preconditioner of K.H. Chen and developed a two-dimensional, axisymmetric Navier-Stokes program. The steady state driven cavity flow and backward facing step flow problems were computed to confirm the accuracy and the robustness of preconditioned algorithm for low Mach number flows. And the transonic and supersonic flows insice the JPL axisymmetric nozzle internal flow is exampled to investigate the effects of preconditioning at high Mach number flow regime. Test results showed excellent agreement with the experimental data.

  • PDF