• Title/Summary/Keyword: eigenvalue and eigenvector

검색결과 127건 처리시간 0.025초

감쇠 시스템의 고유진동수와 모드의 미분을 구하기 위한 대수적 방법의 개선 (Improved Algebraic Method for Computing Eigenpair Sensitivities of Damped System)

  • 조홍기;고만기;이인원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.501-507
    • /
    • 2000
  • This paper presents a very simple procedure for determining the sensitivities of the eigenpairs of damped vibratory system with distinct eigenvalues. The eigenpairs derivatives can be obtained by solving algebraic equation with a symmetric coefficient matrix whose order is (n+1) ${\times}$ (n+1), where n is the number of degree of freedom the mothod is an improvement of recent work by I. W. Lee, D. O. Kim and G. H. Jung; the key idea is that the eigenvalue derivatives and the eigenvector derivatives are obtained at once via only one algebraic equation, instead of using two equations separately as like in Lee and Jung's method. Of course, the method preserves the advantages of Lee and Jung's method.

  • PDF

전자장문제를 위한 Davidson 방번의 병렬화 (A Parallel Algorithm of Davidson Method for Solving and Electomagnetic Problem)

  • 김형중;주욱
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.255-260
    • /
    • 1997
  • The analysis of eigenvalue and eigenvector is a crucial procedure for many electromagnetic computation problems. Although it is always the case in practice that only selected eigenpairs are needed, computation of eigenpair still seems to be a time-consuming task. In order to compute the eigenpair more quickly, there are two resorts: one is to select a good algorithm with care and another is to use parallelization technique to improve the speed of the computing. In this paper, one of the best eigensolver, the Davidson method, is parallelized on a cluster of workstations. We apply this scheme to a ridged waveguide design problem and obtain promising linear speedup and scalability.

  • PDF

항공기 구조 동특성 해석을 위한 외부 장착 포드의 유한요소모델 구축 절차 (Finite Element Model Building Procedure of an External Mounting Pod for Structural Dynamic Characteristics Analysis of an Aircraft)

  • 이종학;유구현;양성철;정대윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.72-77
    • /
    • 2011
  • In this study, the natural frequencies and mode shape of an external mounting pod were verified using the modal analysis and modal testing technique for a pod mounted on an aircraft. The procedure associated with the FEM building of an external mounted pod to predict the dynamic behavior of aircraft structures is described. The simplified FEM reflecting the results of the modal testing of a pod is built through the optimization, applied to the structural dynamic model of an Aircraft, used to verified the stability of vibration and flutter of an aircraft.

  • PDF

Optimal Adaptive Filter Design of M-wave Elimination for Treating Tooth Grinding

  • Yeom, Hojun
    • International journal of advanced smart convergence
    • /
    • 제5권4호
    • /
    • pp.66-70
    • /
    • 2016
  • When tooth grinding occurs, electrical stimulation is given at the same time, and tooth grinding stops on such stimulation. Electromyography signals are used as control signals of electrical stimulation to disturb tooth grinding. However because of the electrical stimulation, the M-waves are generated and mixed with spontaneous electromyogram. In this study, we designed an optimal filter to remove M-wave and conserve spontaneous electromyogram simultaneously. The inverse power method (IPM) showed that the optimal filter coefficient is the eigenvector corresponding to the minimum eigenvalue of the input covariance matrix. In order to evaluate the performance of the optimal filter, we compared using a conventional band pass filter and adaptive filter using least mean square algorithm. The experimental results show that the optimal filter can effectively remove the M-wave compared to the previously studied prediction error filter.

질량과 강성 변경 따른 감쇠구조물의 동특성 변화 해석 (Eigenderivative Analysis of the Damped Structurure due to Modification of Mass and Stiffness)

  • 이정윤
    • 한국공작기계학회논문집
    • /
    • 제14권4호
    • /
    • pp.7-12
    • /
    • 2005
  • This study predicts the modified eigenvectors and eigenvalues of the damped structure due to the change in the mass, damping and stiffness of structure by calculation of the sensitivity coefficient using the original dynamic characteristic. The method is applied to examples of the damped 3 degree of freedom system by modifing the mass, damping and stiffness. The predicted dynamic characteristics are in good agreement with these from the structural reanalysis using the modified mass, damping and stiffness.

감쇠 시스템의 고유진동수와 모드의 민감도를 계산하기 위한 대수적 방법의 개선 (Improved Algebraic Method for Computing Eigenpair Sensitivities of Damped Systems)

  • 조홍기;박선규;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.277-285
    • /
    • 2000
  • This paper presents a very simple procedure for determining the sensitivities of the eigenpairs of damped vibratory system with distinct eigenvalues. The eigenpairs derivatives can be obtained by solving algebraic equation with a symmetric coefficient matrix whose order is (n+1)×(n+1), where n is the number of degree of freedom the method is an improvement of recent work by I. W. Lee, D. O. Kim and G. H. Junng; the key idea is that the eigenvalue derivatives and the eigenvector derivatives are obtained at once via only one algebraic equation, instead of using two equations separately as like in Lee and Jung's method Of course, the method preserves the advantages of Lee and Jung's method.

  • PDF

감도계수 반복법을 이용한 비비례감쇠계의 고유치 및 고유벡터 변화량 해석 (Analysis of Eigenderivative for the Non-Proportional Damped Structure Using the Iterative Method of the Sensitivity Coefficient)

  • 이정윤
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.750-756
    • /
    • 2006
  • This study predicts the modified eigenvectors and eigenvalues of the non-proportional damped structure due to the change in the mass, damping and stiffness of structure by iterative method of the sensitivity coefficient using the original dynamic characteristic. The method is applied to the non-proportional damped 3 degree of freedom system by modifying the mass, damping and stiffness. The predicted dynamic characteristics are showed a good agreement with these from the structural reanalysis using the modified mass, damping and stiffness.

레이저 도플러의 진동에 대한 분석과 3차원 예측연구 (An Analysis and a 3D Prediction of vibration modes in a Laser Doppler)

  • 백란
    • 디지털콘텐츠학회 논문지
    • /
    • 제11권2호
    • /
    • pp.117-122
    • /
    • 2010
  • 본 연구는 레이저 도플러의 진동모드에 대한 분석연구이다. 도플러에서 생성되는 진동모드를 측정하여 각 성분을 분석하여 2차원 연구로부터 3차원을 예측 할 수 있는 성질들을 연구하고자 한다. 진동모드는 범위 탐지기(거리 측정 센서)에 의존하고 있다. 즉, 측정거리에 의해 결정되고 있으므로, 생성되는 변수들로부터 2차원에서부터 3차원에서의 진동모드가 어떻게 생성되는지, 어떤 특성의 패턴으로 나타나는지를 연구함과 더불어, 진동모드와 거리와의 관계도 아울러 연구한다.

다용도 차량의 선형 모델을 이용한 직진 안전성 및 주파수 응답해석 (Stability and frequency response analysis of multipurpose vehicle using linear vehicle model)

  • 김병기;임원식
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.124-129
    • /
    • 1997
  • The purpose of this study is to predict the stability and frequency response of multipurpose vehicle. The vehicle model has seven degrees of freedom. The motion equations are derived by using Lagrangian equation and linearized. The positions of eigenvalues of model which are dominated by lateral velocity, yaw rate, roll rate of sprung mass are used to predict the stability of motion. The resonse of sprung mass to steering wheel is simulated in time domain. It is predicted that the roll response of sprung mass would rather be improved by modifying the position of eigenvalues. The responses of sprung mass to steering wheel are also simulated in frequency domain. The magnitude and phase plots of gains are evaluated in driver's steering input frequency range.

  • PDF

반무한체에 접합된 두 등방성 층의 좌굴 해석 (Buckling Analysis of Two Isotropic Layers Bonded to a Semi-Infinite Substrate)

  • 정경문;범현규
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.2108-2114
    • /
    • 2000
  • The buckling of two elastic layers bonded to a semi-infinite substrate under a transverse compressive plane strain is investigated. Incremental deformation theory, which considers the effect of the initial stress on the incremental stress field, is employed to describe the buckling behavior of both two isotropic layers and the semi-infinite substrate. The problem is converted to an eigenvalue-eigenvector case, from which the critical buckling strain and the buckling wavelength are obtained. The results are presented on the effects of the layer geometries and material properties on the buckling behavior.