• 제목/요약/키워드: eigenvalue analysis

검색결과 791건 처리시간 0.027초

다양한 해석조건을 갖는 항공기에 대한 효율적인 플러터 해석 (Efficient Flutter Analysis for Aircraft with Various Analysis Conditions)

  • 이상욱;김태욱;황인희;백승길
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.49-52
    • /
    • 2005
  • Flutter analysis procedure can be divided into two steps such as the computation of generalized mass, stiffness, and unsteady aerodynamic matrices and the calculation of major vibration modes frequency and damping values at each flight speed by solving the complex eigenvalue problem. In aircraft flutter analyses, most of the time is spent in the process of computing the unsteady aerodynamic matrices at each Mach-reduced frequency pairs defined. In this study, the method has been presented for computation and extraction of unsteady aerodynamic matrix portions dependent only on aerodynamic model using DMAP ALTER in MSC/NASTRAN SOL 145. In addition, efficient flutter analysis method has been suggested by computing and utilizing the unsteady generalized aerodynamic matrices for each analysis condition using the unsteady aerodynamic matrix portions extracted above.

  • PDF

RCF 해석법을 사용한 스위칭 설비의 ON/OFF 시간간격에 의한 진동모드 해석 (Analysis of Oscillation Modes Occurred by ON/OFF Time Intervals of Switching Equipments by the RCf Method)

  • 김덕영;동무환;이윤호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권1호
    • /
    • pp.13-17
    • /
    • 2006
  • In this paper, the RCF(Resistive Companion Form) analysis method which is used to analyze small signal stability problems of non-continuous systems including switching devices. The RCF analysis method is mathematically rigorous and computes eigenvalue of the system periodic transition matrix based on discrete system analysis method. As an effect of switching operations, the eigenvalues of the systems are changed and newly unstable oscillation modes may be occurred. As an illustrating example, the oscillation modes of the system with different switching time intervals are computed exactly by the RCF analysis method and the results show that ON/OFF time intervals of switching equipments are important factors to make the system stable or unstable. This result shows that the RCF analysis method is very powerful to analyze small signal stability problems of power systems including switching devices such as FACTS equipments.

An Efficient Multigrid Algorithm for the Reactor Eigenvalue Problems

  • Cho, Nam-Zin;Lee, Kang-Hyun;Kim, Yong-Hee
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.27-32
    • /
    • 1997
  • In this paper, a new multigrid method is developed to solve the reactor eigenvalue problems. The new algorithm can be used in any matrix equation concerned with the eigenvalue problem. The finite difference neutron diffusion problem is considered demonstration of the performance of the new multigrid algorithm. The numerical results show that the new multigrid algorithm works well and requires much shorter (7~10 times) computing time compaired to the production code VENTURE.

  • PDF

An Application of a Parallel Algorithm on an Image Recognition

  • Baik, Ran
    • Journal of Multimedia Information System
    • /
    • 제4권4호
    • /
    • pp.219-224
    • /
    • 2017
  • This paper is to introduce an application of face recognition algorithm in parallel. We have experiments of 25 images with different motions and simulated the image recognitions; grouping of the image vectors, image normalization, calculating average image vectors, etc. We also discuss an analysis of the related eigen-image vectors and a parallel algorithm. To develop the parallel algorithm, we propose a new type of initial matrices for eigenvalue problem. If A is a symmetric matrix, initial matrices for eigen value problem are investigated: the "optimal" one, which minimize ${\parallel}C-A{\parallel}_F$ and the "super optimal", which minimize ${\parallel}I-C^{-1}A{\parallel}_F$. In this paper, we present a general new approach to the design of an initial matrices to solving eigenvalue problem based on the new optimal investigating C with preserving the characteristic of the given matrix A. Fast all resulting can be inverted via fast transform algorithms with O(N log N) operations.

강체모드분리와 급수전개를 통한 고유치 문제에서의 준해석적 설계 민감도 개선에 관한 연구(II) -동적 문제 - (A Refined Semi-Analytic Sensitivity Study Based on the Mode Decomposition and Neumann Series Expansion in Eigenvalue Problem(II) - Eigenvalue Problem -)

  • 김현기;조맹효
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.593-600
    • /
    • 2003
  • Structural optimization often requires the evaluation of design sensitivities. The Semi Analytic Method(SAM) fur computing sensitivity is popular in shape optimization because this method has several advantages. But when relatively large rigid body motions are identified for individual elements. the SAM shows severe inaccuracy. In this study, the improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes. Moreover. the error of the SAM caused by numerical difference scheme is alleviated by using a series approximation for the sensitivity derivatives and considering the higher order terms. Finally the present study shows that the refined SAM including the iterative method improves the results of sensitivity analysis in dynamic problems.

부구조기법을 이용한 병렬 고유치해석 알고리즘 개발 (Development of Parallel Eigenvalue Solution Algorithm with Substructuring Techniques)

  • 김재홍;성창원;박효선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.411-420
    • /
    • 1999
  • The computational model and a new eigenvalue solution algorithm for large-scale structures is presented in the form of parallel computation. The computational loads and data storages required during the solution process are drastically reduced by evenly distributing computational loads to each processor. As the parallel computational model, multiple personal computers are connected by 10Mbits per second Ethernet card. In this study substructuring techniques and static condensation method are adopted for modeling a large-scale structure. To reduce the size of an eigenvalue problem the interface degrees of freedom and one lateral degree of freedom are selected as the master degrees of freedom in each substructure. The performance of the proposed parallel algorithm is demonstrated by applying the algorithm to dynamic analysis of two-dimensional structures.

  • PDF

AESOPS 알고리즘의 고유치 반복계산식과 Newton Raphson법과의 비교연구 (A comparative study on the iterative eigenvalue calculation method in AESOPS algorithm and Newton Raphson Method)

  • 김덕영;권세혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.259-262
    • /
    • 1998
  • This paper presents a new eigenvalue calculation methods in AESOPS algorithm. The source program of the AESOPS algorithm is modified to practice in PC environment. Window95 is used as an operating system of PC and MicroSoft Power Station is used to compile the fortran source program. The heuristically approximated eigenvalue calculation method of the AESOPS algorithm is transformed to the Newton Raphson Method which is largely used in the nonlinear numerical analysis. The new methods are developed from the AESOPS algorithm and thus only a few calculation steps are added to practice the proposed algorithm.

  • PDF

오목 음향 공동의 고정밀도 고유치 해석을 위한 새로운 MNDIF법 정식 개발 (New Formulation of MNDIF Method for Accurate Eigenvalue Analysis of Concave Acoustic Cavities)

  • 강상욱
    • 한국소음진동공학회논문집
    • /
    • 제23권11호
    • /
    • pp.1003-1011
    • /
    • 2013
  • A new formulation of the MNDIF method is introduced to extract highly accurate eigenvalues of concave acoustic cavities. Since the MNDIF method, which was introduced by the author, can be applicable for only convex acoustic cavities, a new approach of dividing a concave cavity into two convex domains and formulating an algebraic eigenvalue problem is proposed in the paper. A system matrix equation, which gives eigenvalues, is obtained from boundary conditions for each domain and the condition of continuity in the interface between the two domains. The validity and accuracy of the proposed method are shown through example studies.

유사등방성 이종재료 내의 V-노치 균열에 대한 고유치와 고유벡터 해석 (An Analysis of Eigenvalues and Eigenvectors for V-notched Cracks in Pseudo-isotropic Dissimilar Materials)

  • 김진광;조상봉
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.129-139
    • /
    • 2000
  • The problem of eigenvalue and eigenvector is obtained from a V-notched crack in pseudo-isotropic dissimilar materials by the traction free boundary and the perfect bonded interface conditions. The complex stress function is assumed as the two-term William's type. The eigenvalue is solved by a commercial numerical program, MATHEMATICA to discuss stress singularities for V-notched cracks in pseudo-isotropic dissimilar materials. The RWCIM(Reciprocal Work Contour Integral Method) is applied to the determination to eigenvector coefficients associated with eigenvalues. The RWCIM algorithm is also coded by the MATHEMATICA.

  • PDF

고정단 평판의 고정밀도 고유치 해석을 위한 효율적인 무요소법 개발 (Efficient Meshless Method for Accurate Eigenvalue Analysis of Clamped Plates)

  • 강상욱
    • 한국소음진동공학회논문집
    • /
    • 제25권10호
    • /
    • pp.653-659
    • /
    • 2015
  • A new formulation of the non-dimensional dynamic influence function method, which is a type of the meshless method, is introduced to extract highly accurate eigenvalues of clamped plates with arbitrary shape. Originally, the final system matrix equation of the method, which was introduced by the author in 1999, does not have a form of algebraic eigenvalue problem unlike FEM. As the result, the non-dimensional dynamic influence function method requires an inefficient process to extract eigenvalues. To overcome this weak point, a new approach for clamped plates is proposed in the paper and the validity and accuracy is shown in verification examples.