• 제목/요약/키워드: efficient machining

검색결과 255건 처리시간 0.025초

실험계획법에 의한 자동차용 러버실 금형가공을 위한 총형공구의 최적설계 (Optimum Design of Formed Tool for Die of Bearing Rubber Seal Using Design of Experiments)

  • 이여해;임표;이희관;양균의
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.47-53
    • /
    • 2007
  • A bearing is one of core parts in automobile. Rubber seal of the bearing is important to improve performance of bearing, formed by hot-press die of rubber seal for the intricate shape. In this study, formed tools are used to machine die of bearing rubber seal and the machining operation is classified into the several process of high precision. Design of experiments is used to optimize selection of the formed tools for the efficient machining of the hot-press die. The cutting force, tool wear and tool life are determined to characteristics. And, the clearance angle, the rake angle and the length cutting edge are considered as the major factors. Experiments are repeated to use one-way factorial design, and tool life is predicted by regression model.

MCT 가공을 통한 알루미늄 합금의 표면 거칠기와 가공형상에 관한 연구 (A Study on Processing Shape and Surface Roughness of Aluminum Alloy by MCT Processing)

  • 김규태;김원일
    • 한국산업융합학회 논문집
    • /
    • 제16권3호
    • /
    • pp.85-93
    • /
    • 2013
  • The MCT has been most extensively used in the machining. In particular, the ball endmill has been mainly adopted for finishing on the free- form surface. The advancement of CAD/CAM software has made it possible to develop various cutting pattern methods and to create diverse tool routes. Therefore, the current research made an attempt to find the optimal cutting pattern among the seven cutting patterns (i.e., Follow Periphery, Zig, Zig Zag, Concentric Zig, Concentric Zig Zag, Radial Zig, Radial Zig Zag) when aluminium 6000 series were machined by the ball endmill. The optimal pattern was found by comparing different shapes and surface roughness produced by the seven patterns. The current research found that each cutting pattern produced its own unique geometric features on the machined surface. It was found that the Radial Zig cutting pattern produced the lowest roughness on the flat surfaces. The Radial Zig Zag cutting pattern was found to produce the most accurate free-form surface. Finally, the most efficient cutting pattern in terms of machining time turned out to be the Follow Periphery.

방전 드릴링에서 전극 소모량 예측 및 보정 (A Study of Electrode Wear Estimation and Compensation for EDM Drill)

  • 이철수;최인휴;최용찬;김종민;허은영
    • 대한산업공학회지
    • /
    • 제39권3호
    • /
    • pp.149-155
    • /
    • 2013
  • Electric discharging machining (EDM) is commonly adopted to machine the precise and tiny part when it is difficult to meet the productivity and the tolerance by the conventional cutting method. The die-sinking EDM method works well to machine the micro-parts and the perpendicular wall of die and mould, whereas EDM drilling, called super drill, is excellent to machine the deep and narrow hole regardless the material hardness and the hole location. However, the electrode wear is rapid compared to the conventional cutting tool and makes it difficult to control the electrode feeding and to machine precisely. This paper presents an efficient method to estimate the electrode wear using hole pass-through experiment while the stochastic method is used to compensate for the estimation model. To validate the proposed method, the commercial EDM drill machine is used. The experiment result shows that the electrode wear amount can be predicted very precisely.

사각형재의 레이저 예열 선삭에서 레이저 열원 투영법을 이용한 열해석 (Thermal Analysis for Laser Assisted Turning of Square Bar using Laser Heat Source Projection Method)

  • 김재현;최준영;이춘만
    • 한국정밀공학회지
    • /
    • 제28권12호
    • /
    • pp.1353-1358
    • /
    • 2011
  • LAT(Laser Assisted Turning) is a method that applies a machining process after softening a workpiece in which a preheating process is locally applied to its machining section using laser heat source. LAT shows several advantages, such as high productivity, reduction of manufacturing cost, high quality. Analysis of temperature distribution after preheating for LAT is very difficult due to its very small heat input area and large energy and its movement. Also, the LAT for a square bar is more difficult because the shape of a laser heat source can be changed according to the rotation of the workpiece. In this study, thermal analysis for LAT of square bar was performed using laser heat source projection method. And, the analysis results were compared with the results of the prior study of numerical calculation method. It is thus shown that the proposed method is efficient for the thermal analysis of a shaped bar.

신경회로망 방식에 의한 복잡한 포켓형상의 황삭경로 생성 (Neural network based tool path planning for complex pocket machining)

  • 신양수;서석환
    • 한국정밀공학회지
    • /
    • 제12권7호
    • /
    • pp.32-45
    • /
    • 1995
  • In this paper, we present a new method to tool path planning problem for rough cut of pocket milling operations. The key idea is to formulate the tool path problem into a TSP (Travelling Salesman Problem) so that the powerful neural network approach can be effectively applied. Specifically, our method is composed of three procedures: a) discretization of the pocket area into a finite number of tool points, b) neural network approach (called SOM-Self Organizing Map) for path finding, and c) postprocessing for path smoothing and feedrate adjustment. By the neural network procedure, an efficient tool path (in the sense of path length and tool retraction) can be robustly obtained for any arbitrary shaped pockets with many islands. In the postprocessing, a) the detailed shape of the path is fine tuned by eliminating sharp corners of the path segments, and b) any cross-overs between the path segments and islands. With the determined tool path, the feedrate adjustment is finally performed for legitimate motion without requiring excessive cutting forces. The validity and powerfulness of the algorithm is demonstrated through various computer simulations and real machining.

  • PDF

연마필름을 이용한 효율적인 수퍼피니싱 조건의 결정에 관한 실험적 연구 (An Experimental Study on the Determination of Efficient Superfinishing Conditions Using Polishing Film)

  • 정성용;박기범;정윤교;정수룡
    • 한국정밀공학회지
    • /
    • 제26권8호
    • /
    • pp.55-61
    • /
    • 2009
  • Recently, many studies are being conducted to realize high quality polishing technology, but because of high dependence on field experience and insufficient research for ultra-precision polishing technology, it is difficult to establish standardization of polishing conditions. The purpose of this study is to determine high-efficiency superfinishing conditions which are applicable in the field of machining. To achieve this, we have a developed a superfinishing device and conducted a series of polishing experiments for mechanical materials such as SM45C, Brass, Al7075, and Ti, from the perspective of oscillation speed, the rotational speed of the workpiece, contact roller hardness, contact pressure, and feed rate. From the experimental results, it was confirmed that the polishable superfinishing conditions range and efficient feed rate of polishing film can be determined.

경면가공을 위한 수퍼피니싱필름의 효율적인 적용조합에 관한 실험적 연구 (A Experimental Study on Efficient Applicable Combination of Super Finishing Films for Mirror Surface Machining)

  • 조강수;김상규;조영태;정윤교
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.121-128
    • /
    • 2014
  • Superfinishing is essential for mirror surfaces, because among mechanical components cylindrical workpieces such as spindles must maintain precision and reliability with respect to functional characteristics. However, research on standardization of polishing film application combination to obtain mirror surfaces is insufficient. Consequently, this has been a factor in rising costs of mechanical components. Therefore, in this study, experiments have been conducted to determine efficient polishing film application combination for mirror surfaces ranging from ductile materials such as SM45C, brass, aluminium 7075, and titanium to brittle materials such as $Al_20_3$, SiC, $Si_3N_4$, and $ZrO_2$. From the experimental results, efficient polishing film application combination for metallic materials and ceramic materials is confirmed.

선박용 플랫바의 효율적인 NC 절단경로를 고려한 배치방법에 관한 연구 (A Study on Layout Method for Effective NC Cutting Path of the Flat-bar)

  • 이철수;박성도;박광렬;임태완;양정희
    • 한국CDE학회논문집
    • /
    • 제9권2호
    • /
    • pp.102-111
    • /
    • 2004
  • In this paper, the efficient layout method for generating common and continuous cutting path of flat-bar profile. The ‘flat -bar’ is a stiffener and has long rectangular shape. This paper describes a fast nesting algorithm of the flat-bar, and a procedure to generate cutting path of gas/plasma torch, which is operated by a NC (numerically controlled) gas/plasma cutting machine. By using this common and continuous path, the machining-time for cutting and the maintenance-cost of plasma-torch could be reduced. Proposed procedures are written in C-language and applied to the Interactive Flat-Bar-Nesting System executable on Open VMS with X-Window system.

능동적 토크제어를 통한 드릴공정의 안정화 (Stabilization of the Drilling Process through Active Torque Control)

  • 김중배;이상조
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2234-2241
    • /
    • 1993
  • The torque variation in drilling process represents the problems of the efficient and stable machining. In order to cope with them, the active control method is adopted to drill the workpiece under the constant cutting torque though the cutting stiffness of the workpiece or the diameter of the drill bit changes. The cutting process is modeled in the geometric viewpoint related with the feed and the number of cutting lips. And the dynamic model is approximated to the first order system for the purpose of control. The adaptive PI control is used in computer simulations and experiments. The results of the study show the validity of the drilling method with torque control.

퍼지 알고리즘을 이용한 평면연삭의 형상정도 향상에 관한 연구 (A Sutdy on Improvement of Geomeric Accuracy by using Fuzzy Algorithm in Surface Grinding)

  • 천우진;김남경;하만경;송지복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.149-154
    • /
    • 1993
  • In heavy grinding that is on of the high efficient grinding method, meaningful deformation is generated by high temperature. So, after machining, geomeric error generated od the workpiece. The most important factor on the geometric error is temperature difference between upper layer and lower layer (T $_{d}$) . Relations between Td and grinding condition and maximum geometric error and grinding condition are obtained by experiment. This relations are used in fuzzy algorithm for improvement geometric accuracy. The main results are follows : (1) The linear relation between maximum geometric error and grinding condition is ovtained by experiment. (2) The linear relation between maximum temperature difference between upper layer and lower layer and grinding condition is ovtained by experiment. (3) Control peth of wheel for improvement geometric accuracy is obtained by using the fuzzy algorithm.m.

  • PDF