• 제목/요약/키워드: efficient machining

검색결과 255건 처리시간 0.03초

포텐셜 에너지를 이용한 5축 NC 밀링의 공구방향 결정 (Determination of Tool Orientation in 5-axis Milling Using Potential Energy Method)

  • 조인행;이건우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.199-204
    • /
    • 1994
  • A method for determining the collision-free tool orientation for 5-axis milling is presented. In 5-axis milling, the proper tool orientation as well as the optimal CC-data has to be selected to machine the workpiece efficiently and accurately and accurately. Essentially, the tool orientation should be determined to avoid collisions between the tool and workpiece and to enable efficient machining. In this work, the tool orientation is determined at every CC-point which is assumed to be given. The procedure uses the potential energy method that assumes the tool and the part surfaces are charged with static electricity. This approach can detect can deteat both global and local collisions (gouging) irrespective of the tool shape. Further, in order to increase the machining efficiency, the material removal rate is maximized simultaneously.

  • PDF

싱글 스크류 압축기의 스크류 로터의 설계 및 가공 (Design and Machining of a Screw Rotor of a Single-Screw Compressor)

  • 김두형;경진호;김왕환
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.452-457
    • /
    • 2016
  • Single screw compressors are widely used in the fields of air/gas compression, refrigeration, and chemical fluid transportation systems. A single-screw compressor is composed of a screw rotor and two gate rotors located at both sides. This simple construction enables low rotational speed of the rotor, efficient compression with low noise, low vibration, and long bearing life. Despite these merits, the design method of single-screw compressors is not well known. To accelerate the industrial application of single-screw compressors, a design method using coordinate transformation is presented in this paper, and a tool trajectory is established for machining. Finally, the screw rotor, which is machined using the proposed method, is presented.

3D 기반의 기상측정 운영시스템 개발 (The Development of 3D based On-Machine Measurement Operating System)

  • 윤길상;최진화;조명우;김찬우
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.145-152
    • /
    • 2004
  • This paper proposed efficient manufacturing system using the OMM (on-machine measurement) system. The OMM system is software based 3D modeler for inspection on machine and it is interfaced tool machine with RS232C. The software is composed of two inspection modules that one is touch probe operating module and the other is laser displacement sensor operating module. The module for touch probe has need of inspection feature that extracted it from CAD data. Touch probe moves to workpiece by three operating modes as follows: manual, general and automatic mode. The operating module of laser displacement sensor is used inspection for profile and very small hole. An Advantage of this inspection method is to be able to execute on-line inspection during machining or after it. The efficiency of proposed system which can predict and definite the machining errors of each process is verified, so the developed system is applied to inspect the mold-base(cavity, core).

금속 적층 기반 하이브리드 머시닝센터의 경량화를 위한 형상 최적화에 관한 연구 (Shape Optimization for Lightweight of the Metal 3D Printing Based Hybrid Machining Center)

  • 정원용;정호인;이춘만
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.80-85
    • /
    • 2021
  • In the fourth industrial revolution, the demand for metal three-dimensional (3D) printing technology is rapidly increasing. Metal 3D printing is an efficient method for manufacturing products because the method reduces material waste compared to subtractive manufacturing. In addition, products with complex shapes, such as turbine blades, can be easily produced using metal 3D printing because the method offers a high degree of freedom. However, due to the long production time of metal 3D printing, mass production is impossible, and post-processing is necessary due to its low precision. Therefore, it is necessary to develop a new hybrid process that can efficiently process metals and to develop a metal 3D-printing-based hybrid processing system technology to secure high processing precision and manufacture complex shapes. In this study, the structural stability of a metal 3D printer based hybrid machining center was analyzed through structural analysis before its development. In addition, we proposed a design modification that can reduce the weight and increase the stiffness of the hybrid machining center by performing shape lightning based on the structural analysis results.

생산율에 따른 U-라인의 효율적인 운용 알고리즘 (An Algorithm for the Efficient Operation of the U-Shaped Line)

  • 박승헌
    • 대한안전경영과학회지
    • /
    • 제6권1호
    • /
    • pp.173-185
    • /
    • 2004
  • The production using U-shaped line is studied. This research presents the relationship among machining time, cycle time and production rate in a U-shaped line. The U-shaped line produces shafts by automated machines. In this paper when any production rate is given the U-shaped line always satisfies the production rate. An algorithm is developed for the determination of cycle time, the number of machines and workers of the U-shaped line in order to minimize the total machine capacity and the number of workers for any given production rate. The U-shaped line was successfully designed by applying the proposed algorithm.

컴퓨터 원용 수동프로그래밍 시스템 CAMP의 개발에 관한 연구 (A study on the development of computer assisted manual programming system CAMP)

  • 이재원;조경태;이용표
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.285-288
    • /
    • 1988
  • Despite of the low productivity, the manual programming for NC machining is still widly used because of it's economical reasons. In this study, the computer assisted manual programming system CAMP which assits the efficient verification of MCD(Machine Control Data) is presented. The system can detect sysntax errors, graphically display tool motions and eventually diagnose programming techniques. The case study is applied for the NC turning operations.

  • PDF

자유곡면의 NC 황삭가공을 위한 자동 공구 선정과 경로 생성 (Automatic Tool Selection and Path Generation for NC Rough Cutting of Sculptured Surface)

  • 홍성의;이건우
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.28-41
    • /
    • 1994
  • An efficient algorithm is proposed to select the proper tools and generate their paths for NC rough cutting of dies and molds with sculptured surfaces. Even though a milling process consists of roughing, semi-finishing, and finishing, most material is removed by a rough cutting process. Therfore it can be said that the rough cutting process occupy an important portion of the NC milling process, and accordingly, an efficient rough cutting method contributes to an efficient milling process. In order work, the following basic assumption is accepted for the efficient machining. That is, to machine a region bounded by a profile, larger tools should be used in the far inside and the region adjacent to relatively simple portion of the boundary while smaller tools are used in the regions adjacent to the relatively complex protion. Thus the tools are selected based on the complexity of the boundary profile adjacent to the region to be machined. An index called cutting path ratio is proposed in this work as a measure of the relative complexity of the profile with respect to a tool diameter. Once the tools are selected, their tool paths are calculated starting from the largest to the smallest tool.

  • PDF

3D CAD를 이용한 사출금형의 쿨링 라인과 이젝터 핀의 효과적인 배치 방법 (An efficient Methods for Placing the Cooling Lines and Ejector Pins of Injection Mold in 3D CAD system)

  • 이철수;박광렬
    • 산업공학
    • /
    • 제13권2호
    • /
    • pp.157-165
    • /
    • 2000
  • In this paper, an efficient method is proposed to place the cooling lines(CLS) and ejector pins(EPS) of mold design. The other components of mold, except CLS and EPS, can be generated automatically by batch processing. But the placements and sizes of CLS and EPS depend on the shapes of a part, so that the design works of CLS and EPS should be processed interactively. Using the pre-defined reference points, the positions of CLS and EPS can be determined interactively. By the proposed method, the interference occurred during placing CLS and EPS can be avoided, and the proper lengths of them can be calculated automatically. The information of the positions and lengths are stored in BOM database for generating a machining data. The proposed method is implemented with Unigraphics API functions and C language, tested on Unigraphics V15.

  • PDF

충진재를 이용한 특징형상 가공용 RFPE 공정 개발 (Development of Feature-based Encapsulation Process using Filler Material)

  • 최두선;이수홍;신보성;윤경구;황경현;이호영
    • 한국정밀공학회지
    • /
    • 제18권1호
    • /
    • pp.98-103
    • /
    • 2001
  • Machining is the commonly used process in the manufacturing of prototypes. This process offers several advantages, such as rigidity of the machine, precision of the machine, precision of the operation and specially a quick delivery. The weight and immobility of the machine support and immobilize the part during the operation. However, despite these advantages it shows, machining still presents several limitations. The immobilization, location and support of the part are referred to as fixturing or workholding and present the biggest challenge for time efficient machining. So it is important to select and design the appropriate fixturing assembly. This assembly depends on the complexity of the part and the tool paths and may require the construction of dedicated fixtures. With traditional techniques, the range of fixturable shapes is limited and the identification of suitable fixtures in a given setup involves complex reasoning. To solve this limitation and to apply the automation, this paper presents the Reference Free Part Encapsulation(RFPE) and implementation of the encapsulation system. The feature-based modeling system and the encapsulation system are implemented. The small part of which it is difficult to find out the appropriate fixturing assembly is made by this system.

  • PDF

엔지니어링 플라스틱의 CNC 선반가공에서 공정변수 특성 및 표면거칠기 예측 (The Process Factor Characteristics and Surface Roughness Prediction of Engineering Plastics in CNC Turning)

  • 이정희;엄성진;곽재섭
    • 한국기계가공학회지
    • /
    • 제19권6호
    • /
    • pp.73-79
    • /
    • 2020
  • Although engineering plastics that are light-weight and have excellent mechanical performance have been widely applied in various industries in place of steel structures to reduce the burden of cost and time, there have been few studies related to their surface roughness. This study aims to evaluate the optimal effects of feed rate, cutting speed, and depth of cut as cutting parameters as well as nose angle on the surface characteristics of MC nylon in CNC lathe machining. To determine the best conditions under different nose radii, the experiments were performed based on the Taguchi L9(34) orthogonal array method, in which the resulting data was analyzed using the S/N ratio and ANOVA. Results indicate that the most significant contribution was feed rate followed by nose angle and cutting speed, whereas the depth of cut did not influence the performance. This study demonstrates that the suggested method for improving the surface finishing of MC nylon is efficient compared with results obtained from experimentation and prediction.