• Title/Summary/Keyword: effective width coefficient

Search Result 44, Processing Time 0.026 seconds

Labyrinth Seal Design Considering Leakage Flow Rate and Rotordynamic Performance (누설유량과 회전체동역학적 성능을 고려한 래버린스 씰 설계)

  • Minju Moon;Jeongin Lee;Junho Suh
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.61-71
    • /
    • 2023
  • This study proposes a procedure for designing a labyrinth seal that meets both leakage flow rate and rotordynamic performance criteria (effective damping, amplification factor, separation margin, logarithmic decrement, and vibration amplitude). The seal is modeled using a one control volume (1CV) bulk flow approach to predict the leakage flow rate and rotordynamic coefficients. The rotating shaft is modeled with the finite element (FE) method and is assumed to be supported by two linearized bearings. Geometry, material and operating conditions of the rotating shaft, and the supporting characteristics of the bearings were fixed. A single labyrinth seal is placed at the center of the rotor, and the linearized dynamic coefficients predicted by the seal numerical model are inserted as linear springs and dampers at the seal position. Seal designs that satisfy both leakage and rotordynamic performance are searched by modifying five seal design parameters using the multi-grid method. The five design parameters include pre-swirl ratio, number of teeth, tooth pitch, tooth height and tooth tip width. In total, 12500 seal models are examined and the optimal seal design is selected. Finally, normalization was performed to select the optimal labyrinth seal designs that satisfy the system performance requirements.

Performance Analysis of Wave Energy Converter Using a Submerged Pendulum Plate (몰수형 진자판을 이용한 파력발전장치의 성능해석)

  • Cho, Il Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.91-99
    • /
    • 2017
  • The parametric study was performed for performance enhancement of wave energy converter(WEC) using a submerged pendulum plate. The wave exciting moment and hydrodynamic moment were obtained by means of eigenfunction expansion method based on the linear potential theory, and then the roll response of a pendulum plate and time averaged extracted power were investigated. The optimal PTO damping coefficient was suggested to give optimal extracted power. The peak value of optimal extracted power occurs at the resonant frequency. The resonant peak and it's width increase, as the height and thickness of a pendulum plate increase. The mooring line installed at the end of the pendulum plate is effective for extracting wave energy because it can not only induce the resonance with the waves of the installation site but also increase the restoring moment in case of PTO-on. The WEC using a rolling pendulum plate suitable for the shallow water acts as breakwater as well as energy extraction device.

Hybrid adaptive neuro fuzzy inference system for optimization mechanical behaviors of nanocomposite reinforced concrete

  • Huang, Yong;Wu, Shengbin
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.515-527
    • /
    • 2022
  • The application of fibers in concrete obviously enhances the properties of concrete, also the application of natural fibers in concrete is raising due to the availability, low cost and environmentally friendly. Besides, predicting the mechanical properties of concrete in general and shear strength in particular is highly significant in concrete mixture with fiber nanocomposite reinforced concrete (FRC) in construction projects. Despite numerous studies in shear strength, determining this strength still needs more investigations. In this research, Adaptive Neuro-Fuzzy Inference System (ANFIS) have been employed to determine the strength of reinforced concrete with fiber. 180 empirical data were gathered from reliable literature to develop the methods. Models were developed, validated and their statistical results were compared through the root mean squared error (RMSE), determination coefficient (R2), mean absolute error (MAE) and Pearson correlation coefficient (r). Comparing the RMSE of PSO (0.8859) and ANFIS (0.6047) have emphasized the significant role of structural parameters on the shear strength of concrete, also effective depth, web width, and a clear depth rate are essential parameters in modeling the shear capacity of FRC. Considering the accuracy of our models in determining the shear strength of FRC, the outcomes have shown that the R2 values of PSO (0.7487) was better than ANFIS (2.4048). Thus, in this research, PSO has demonstrated better performance than ANFIS in predicting the shear strength of FRC in case of accuracy and the least error ratio. Thus, PSO could be applied as a proper tool to maximum accuracy predict the shear strength of FRC.

A Study on the Reduction of Entry Loss by Inner Structure in Square Hood in Industrial Ventilation System (산업환기시설에서 사각형 후드의 내부 설치에 의한 유입손실 감소에 관한 연구)

  • Bae, Hyun-Joo;Yang, Won-Ho;Kim, Jong-Oh;Son, Bu-Soon
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.3 s.49
    • /
    • pp.27-34
    • /
    • 2003
  • An objective of local exhaust hood design is to design the hood to operate as efficiently as possible. The greatest loss normally occurs at the entrance to the duct, due to the vena contracta in the throat of the duct. This can be accomplished by minimizing the loss that results from the vena contracta. There have been little studied to be cost-effective approach as installing simple instrument inside the throat of the hood. The aims of this paper were to minimize entry loss using inner square, and to measure the effect of inner square when installed inside hood throat. The results of this study were as follows; First, the magnitude of vena contracta could be considered as the difference between direct measured velocity and calculated velocity, which is from Bernoulli theory. In circle hood, calculated velocity and direct measured velocity were 10.7m/sec and 10.3n/sec, respectively. And the calculated velocity and direct measured velocity in square hood were 7.7m./sec and 6.5m/sec, respectively. Second, effect of inner square by width was carried out. The widths of inner square were L/1(18cm), L/2(9cm), L/3(6cm) and L/6(3cm). In case inner square was installed with 3cm width, the entry of coefficient was 0.93, comparing with 0.85 of entry of coefficient of general hood. Third, effect of inner square by distance from hood inside surface to inner square was carried out. The distances were L/3(6cm), L/6(3cm), L/9(2cm) and L/l8(1cm). In case the distance was 3cm the best efficiency was shown (Ce= 0.93). Fourth, effect of inner square by location from hood entry to duct inside was carried out. The locations of inner square were entry(0cm), L/6(3cm), L/3(6cm), L/2(9cm) and L/l(12cm). In case the location was 0cm, 3cm and 6cm the entry of coefficients were 0.93, 0.92 and 0.90, respectively.

Estimation of Leaf Area Using Leaf Length, Leaf width, and Lamina Length in Tomato (엽장, 엽폭, 엽신장을 이용한 토마토의 엽면적 추정)

  • Lee, Jae Myun;Jeong, Jae Yeon;Choi, Hyo Gil
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.325-331
    • /
    • 2022
  • One of the most important factors in predicting tomato growth and yield is the leaf area. Estimating leaf area accurately is the beginning of an effective tomato plant growth assessment model. To this end, this study was conducted to identify the most effective model for estimating plant leaf area through the measurement of tomato plant leaves. Leaf area (LA), leaf length (L), leaf width (W), and lamina length (La) were measured for all leaves of 5 plants at two-week intervals. The correlation between LA and tomato-leaf-independent variables showed a strong positive relationship with the formulas La × W, L × W, La + W, and L + W. For LA estimation, a linear model using the formula LA = a + b (La2 + W2) gave the most accurate estimation (R2 = 0.867, RMSE = 88.76). After examining the positions of upper, middle, and lower leaves from September to December, the coefficient of determination (R2) values for each model were 0.878, 0.726, and 0.794 respectively. The most accurate estimation came from the model that used the upper leaves of the plants. The high accuracy of the upper-leaf-based model is judged by the 50% defoliation performed by farmers after October.

Study on Channel-bed Fluctuation Using Aerial Photographs(II) -Analysis of spatial-temporal distribution on the deposits- (항공사진(航空寫眞)을 이용(利用)한 하상변동(河床變動)에 관한 연구(硏究)(II) -하상퇴적지(河床堆積地)의 시(時)·공간적(空間的) 분포(分布) 해석(해석)-)

  • Chun, Kun Woo;Kim, Kyoung Nam;Cha, Du Song
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.3
    • /
    • pp.369-376
    • /
    • 1995
  • Black and White aerial photogrphs are much useful to obtain the information on the channel-bed fluctuation in the following aspects. 1. In the decision of river width, the linear regression formula between the value of aerial photograph interpretation and that of field surveying is Y=1.0+0.94X(the decision coefficient is $r^2=0.98$). Therefore, aerial photographs are proved effective for the measurement of river width. 2. Aerial photograph interpretation makes it possible to classify the plane channel and the deposits in river, and suggests the situation of the plane distribution of deposits, the size of channel and the course of channel formation. 3. The periodical channel situation can be figured out through the interpretation of aerial photographs pictured in different times. Also, the comparing and analyzing each interpretated information can be able to guess the course of the variation of channel influencing powerfully channel - bed fluctuation. 4. The microtopographic map of river can be made through the decision of river with, the interpretation of the plane shape of channel - bed and the analysis of variation of channel. On the basis of this map, the plane analysis of deposit is possible.

  • PDF

Interrelationships and Path Coefficients of Pericarp Characters in Red Pepper(Capsicum annuum L.) (고추 과육중(果肉重) 구성형질(構成形質)의 상관(相關)과 경로계수분석(經路係數分析))

  • Kim, Yang Choon;Park, Gyu Hwan;Choi, Soon Ho
    • Current Research on Agriculture and Life Sciences
    • /
    • v.2
    • /
    • pp.9-14
    • /
    • 1984
  • This study was performed to obtain the effective selection informations for improvement of quality and increase of yield in red pepper. The eight parents and twenty eight crosses from partial diallel were used as materials for estimation of correlations among the pericarp characters, viz, fruit length, fruit width, pericarp thickness (fresh and dry) and pericarp weight (fresh and dry), between pericarp weight and seed weight and between pericarp weight and the percent of seed weight/pericarp weight and path coefficients on fresh and dry pericarp weight. Results were as follows. In $F_1s$, fresh and dry pericarp weight had positive correlations with fruit length, fruit width, and pericarp thickness. Fresh pericarp weight was also positively correlated with dry pericarp weight. Dry pericarp thickness had a negative correlation with fruit length but had positive correlations with fruit width and fresh pericarp thickness. Fresh pericarp thickness had a positive correlation with fruit width. Significantly positive correlations between $F_1s$ and mid-parents were observed in pericarp characters. Pericarp weight had a positive correlation with seed weight but had a negative correlation with the percent of seed weight/pericarp weight. In path coefficient analysis, it was found that fruit length, fruit width and pericarp thickness had direct effects on fresh and dry pericarp weight and that fruit length had the largest direct effect in $F_1s$.

  • PDF

Analysis of Longitudinal Steel Behaviors of Continuously Reinforced Concrete Pavement at Early Age (연속철근콘크리트(CRCP) 종방향 철근의 초기거동 분석)

  • Nam, Jeong-Hee;Jeon, Sung Il
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.59-67
    • /
    • 2014
  • PURPOSES : The purpose of this study is to analyse the longitudinal steel strain and stress of continuously reinforced concrete pavement(CRCP) with longitudinal and transverse direction at early age using stress dependent strain analysis method. METHODS : To measure the longitudinal steel strain, 9-electrical resistance and self-temperature compensation gauges were installed to CRCP test section (thickness = 250mm, steel ratio = 0.7%) and continuously measured 10min. intervals during 30days. In order to properly analyze the steel stress first, temperature compensation process has been conducted. Secondly, measured steel strains were divided into stress dependent strain (elastic strain) and stress independent strain (thermal strain) and then stress dependent strain was applied to stress calculation of longitudinal steels. RESULTS : Steel strains were successfully measured during 30days. To verify the accuracy of temperature compensation process, measured coefficient of thermal expansion(COTE,$11.46{\times}10^{-6}m/m/^{\circ}C$) of longitudinal steel before paving was compared with that of unrestrained steel. Max. steel stress in the transverse direction shows about 266MPa at 23days after placement. CONCLUSIONS : Steel stresses in the longitudinal and transverse direction have been evaluated. In longitudinal direction, steel stress from the crack was rapidly reduced from 183MPa at crack to 18MPa from 600mm apart the crack. From this observation, stress effective length can be identified as within 600mm apart from the crack. In transverse direction, max. stress point was located near the center of pavement width and stress level(266MPa) is about 66% of yield stress of steel.

Hydrodynamic Analysis of Two-dimensional Floating Breakwater in Weakly Nonlinear Waves (약 비선형 파랑에 대한 연직 2차원 부방파제의 동수역학적 해석)

  • Lee, Jeongwoo;Cho, Woncheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.539-549
    • /
    • 2006
  • The performance of a pontoon-type floating breakwater (FB) is investigated numerically with the use of a second-order time domain model. The model has been developed based on potential theory, perturbation theory and boundary element method. This study is focused on the effects of weakly nonlinear wave on the hydrodynamic characteristics of the FB. Hydrodynamic forces, motion responses, surface elevation, and wave transmission coefficient around the floating breakwater are evaluated for various wave and geometric parameters. It is shown that the second-order wave component is of significant importance in calculating magnitudes of the hydrodynamic forces, mooring forces and the maximum response of a structure. The weak non-linearity of incident waves, however, can have little influence on the efficiency of the FB. From numerical simulations, the ratio of draft and depth, the relationship of wave number and width are presented for providing an effective means of reducing wave energy.

Analysis of Elements for Efficiencies in Magnetically-Coupled Wireless Power Transfer System Using Metamaterial Slab (메타물질 Slab이 포함된 자계 결합 무선 전력 전송 시스템 효율 요소 분석)

  • Kim, Gunyoung;Oh, TaekKyu;Lee, Bomson
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1128-1134
    • /
    • 2014
  • In this paper, the effects of a metamaterial slab with negative permeability in a magnetically coupled wireless power transfer system (WPT) in the overall performance are analyzed quantitatively in terms of the effective quality factors of the loop resonators and coupling coefficient considering the slab losses, based on an equivalent circuit. Using the ideal metamaterial slab(lossless slab), the WPT efficiency is improved considerably by the magnetic flux focusing. However, the practical lossy slab made of RRs or SRRs limits the significant enhancement of WPT efficiency due to the relatively high losses in the slab consisting of RRs or SRRs near the resonant frequency. For the practical loop resonator, other than a point magnetic charge, using the practical lossy metamaterial slab in order to improve the transfer efficiency, the width of the slab needs to be optimized somewhat less than the half of the distance between two loop resonators. For the low-loss slab with its loss tangent of 0.001, the WPT efficiency is maximized at 93 % when the ratio of the slab width and the distance between the two resonators is approximately 0.35, compared with 53 % for the case without the slab. The efficiency in case of employing the high-low slab(loss tangent: 0.2) is maximized at 61 % when the slab ratio is 0.25.