• Title/Summary/Keyword: effective void ratio

Search Result 104, Processing Time 0.02 seconds

Characterization of Non-linear Consolidation of Dredged Soil from Incheon Area (인천 지역 준설토의 비선형 압밀특성 연구)

  • Oak, Young-Suk;An, Yong-Hoon;Lee, Chul-Ho;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1693-1706
    • /
    • 2008
  • It is of importance to determine the zero effective stress void ratio($e_{00}$), which is the void ratio at effective stress equal to zero, and the relationships of void ratio-effective stress and of void ratio-hydraulic conductivity for characterizing non-liner finite strain consolidation behavior for ultra-soft dredged materials. The zero effective stress void ratio means a transitional status from sedimentation to self-weight consolidation of very soft soil deposits, and acts as a starting point for self-weight consolidation in the non-linear finite strain numerical analysis such as PSDDF. In this paper, a new method for determining the zero effective stress void ratio has been introduced with the aid of measuring electrical resistivity of the specimen. A correlation between the zero effective stress void ratio and the initial slurry void ratio has been proposed, which can be used in PSDDF analysis as an input parameter. Combining all of the accessible experimental data, the consolidation characteristics of a dredged soil from the Incheon area has been studied in detail.

  • PDF

Poisson's Ratio Prediction of Soil Using the Consolidation Undrained Triaxial Compression Test (압밀비배수 삼축압축실험을 이용한 지반의 포아송비 예측)

  • Lim, Seongyoon;Yu, Seokchoel;Kim, Yuyong;Kim, Myeonghwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.45-51
    • /
    • 2020
  • The poisson's ratio was obtained from the effective vertical stress and horizontal stress of consolidation-undrained test. It was analyzed void ratio verse poisson's ratio. At the result, the effective friction angle was increase with relative density increased, was decreased the poisson's ratio. The empirical equation of void ratio and poisson's ratio was showed very high correlation r2=0.846. The empirical equation was showed that the smaller the void ratio in the fine grained soil than granular soil. In the case of 0.85 times the correlation analysis equation of granular and fine grained soil, the experimental results were shown very similarly. In especially, the poisson's ratio prediction results was shown within 5% of the error range, was revalidation 0.85 times the correlation analysis equation using the void ratio. In this study, correlation analysis equation of the granular and fine grained soil was more reliability of the poisson's ratio prediction results apply to the void ratio than dry unit weight.

A Study on the Parameters Determining the Void Crushing Ratio in the Cogging Process of Large Forged Products (대형 단조품 코깅 공정의 기공 압착 인자에 대한 연구)

  • Song, M.C.;Kwon, I.K.;Park, Y.G.
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.502-508
    • /
    • 2007
  • Effect of the process parameters of the cogging process on the void crushing has been studied in order to identify the most effective factor. The process parameters considered in this study are die width ratio, reduction ratio and pre-cooling time before cogging process. Void crushing analysis with the selected process parameters was carried out using FE analysis. The results of FE analysis were evaluated by Taguchi method. It was found that the efficiency of void crushing increases with an increase in the values of all selected process parameters and the principal factor controlling the void crushing was identified as the reduction ratio.

A Study on the Parameters Contributing to the Void Crushing in the Cogging Process of Large Forged Products (대형 단조품 코깅 공정의 기공 압착 인자에 대한 연구)

  • Song, M.C.;Kwon, I.K.;Park, Y.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.127-130
    • /
    • 2007
  • Effect of the forging process parameters on the void crushing is the cogging process has been studied in order to find the most effective factor. The Process parameters used for this study are die width ratio, reduction ratio and pre-cooling time before cogging process. Void crushing analysis about the selected process parameters was carried out using FE analysis. The results of FE analysis were evaluated by Taguchi method. It was found that the efficiency of void crushing increases with an increase in the values of all selected process parameters and the principal factor controlling the void crushing was identified as the reduction ratio.

  • PDF

On the effect of void ratio and particle breakage on saturated hydraulic conductivity of tailing materials

  • Ma, Changkun;Zhang, Chao;Chen, Qinglin;Pan, Zhenkai;Ma, Lei
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.159-170
    • /
    • 2021
  • Particle size of tailings in different areas of dams varies due to sedimentation and separation. Saturated hydraulic conductivity of high-stacked talings materials are seriously affected by void ratio and particle breakage. Conjoined consolidation permeability tests were carried out using a self-developed high-stress permeability and consolidation apparatus. The hydraulic conductivity decreases nonlinearly with the increase of consolidation pressure. The seepage pattern of coarse-particle tailings is channel flow, and the seepage pattern of fine-particle tailings is scattered flow. The change rate of hydraulic conductivity of tailings with different particle sizes under high consolidation pressure tends to be identical. A hydraulic conductivity hysteresis is found in coarse-particle tailings. The hydraulic conductivity hysteresis is more obvious when the water head is lower. A new hydraulic conductivity-void ratio equation was derived by introducing the concept of effective void ratio and breakage index. The equation integrated the hydraulic conductivity equation with different particle sizes over a wide range of consolidation pressures.

Performance Evaluation of Porous Hwang-toh Concrete Using Blast Furnace Slag Cement (고로슬래그시멘트를 사용한 다공성 황토콘크리트의 성능 평가)

  • Kim, Hwang-Hee;Kang, Su-Man;Park, Jong-Sik;Park, Sang-Woo;Jeon, Ji-Hong;Lee, Jin-Hyung;Cha, Sang-Sun;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.9-17
    • /
    • 2010
  • This study aims to evaluate a porous concrete using hwang-toh, blast furnace slag and blast furnace slag (BFS) cement instead of type I cement. The tests that were carried out to analysis the properties of porous hwang-toh BFS cement concrete included compressive strength, continuous void ratio, absorption rate, and pH value, repeated freezing and thawing test were conducted. Test results indicated that the performance in porous hwang-toh concrete are effective on the kaoline based binder materials. The pH value were shown in about 9.5 ~ 8.5. The compressive strength was increased and void ratio was decreased with increasing the kaoline based binder materials, respectively. The void ratio and compressive strength were in the range of about 21 ~ 30 %, 8 ~ 13 MPa, respectively. The increased in void ratio of more than 25 % is showed to reduce the resistance of repeated freezing and thawing. Also, the resistance of repeated freezing of thawing and the compressive strength of porous hwang-toh BFS cement concrete are independent with hwang-toh content and BFS cement amount. But, the void ratio was decreased with increasing the high volume hwang-toh contents (more than 15 %).

The Study of void Closing Behavior in Upset Forging of Large Ingot (대형 잉곳의 업셋 단조에서의 기공 압착 거동에 관한 연구)

  • Lee K. J.;Bae W. B.;Cho J. R.;Kim D. K.;Kim J. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.406-409
    • /
    • 2005
  • In the forging operation of large ingot two break-down process are upsetting and cogging. The first purpose of upsetting is to ensure sufficient forging ratio for subsequent cogging operations and consolidate the voids along the centerline. The second purpose is related to improve the physical properties for a final product. Voids which are generated during the casting process can be one of the decisive defects of materials. So it is necessary to know the standard of Judgment for void-closure in upsetting operation. In practical conditions, FEM analysis(DEFORM 2D 8.1) was carried out to decide how much effective strain has influence on void-closure. It is finally suggested that the function consists of the effective strain of analysis data and the area rate of void.

  • PDF

Analysis Method for Non-Linear Finite Strain Consolidation for Soft Dredged Soil Deposit -Part I: Parameter Estimation for Analysis (초연약 준설 매립지반의 비선형 유한변형 압밀해석기법 -Part I: 해석 물성치 평가)

  • Kwak, Tae-Hoon;Lee, Chul-Ho;Lim, Jee-Hee;An, Yong-Hoon;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.13-24
    • /
    • 2011
  • The renowned Terzaghi's one-dimensional consolidation theory is not applicable to quantification of time-rate settlement for highly deformable soft clays such as dredged soil deposits. To deal with this special condition, a non-linear finite strain consolidation theory should be adopted to predict the settlement of dredged soil deposits including self-weight and surcharge-induced consolidation. It is of importance to determine the zero effective stress void ratio ($e_{00}$), which is the void ratio at effective stress equal to zero, and the relationships of void ratio-effective stress and of void ratio-hydraulic conductivity for characterizing non-linear finite strain consolidation behavior for deformable dredged soil deposits. The zero effective stress void ratio means a transitional status from sedimentation to self-weight consolidation of dredged soils. In this paper, laboratory procedures and equipments are introduced to measure such key parameters in the non-linear finite strain consolidation analysis. In addition, the non-linear finite strain consolidation parameters of the Incheon clay and kaolinite are evaluated with the aid of the proposed methods in this paper, which will be used as input parameters for the non-linear finite strain consolidation analyses being performed in the companion paper.

Effects of Gradation on Dynamic properties of Sands (모래의 입도가 동적 특성에 미치는 영향)

  • 송정락;김수일
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.7-16
    • /
    • 1987
  • The dynamic properties of soils are affected by parameters like, gradation characteristics, void ratio, confining pressure, etc. . This study mainly investigated experimentally the effect of gradation on the dynamic properties of sands with the effect of void ratio and confining pressure. Test results showed that shear modulus/damping ratio was increased/decreased with the decrease of void ratio and with the increase of confining pressure. When the fine content increased, shear modulus/damping ratio was decreased/increased. This study explained this phenomenon by the concept of the "effective number of contacts" and the "dead space".ot;dead space".uot;.

  • PDF

Occurrence of Sand Liquefaction on Static and Cyclic Loading (정적 및 동적 하중에서 모래의 액상화 발생)

  • 양재혁
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.235-244
    • /
    • 2001
  • Liquefaction may be caused by sudden decrease in the soil strength under undrained conditions. This loss of soil strength is related to the development of excess pore pressures. During this study, fines content affects the maximum and minimum void ratios are investigated. The results of static and cyclic triaxial test on silty saturated sands are presented. These tests are performed to evaluate liquefaction strength and static and cyclic behavior characteristics. The samples are obtained from Saemangeum and drying on air. The main results are summarized as follows : 1) The maximum and minimum void ratio lines follow similar trends. 2) Maximum and minimum void ratios are established at 20~30% fines content. 3) As confining pressures and overconsolidation ratio are increased, the resistance to liquefaction are increased. 4) Instability friction angles are increased with increasing initial relative density. 5) The resistance to liquefaction are decreased with increasing effective stress ratio.

  • PDF