• Title/Summary/Keyword: effective stirrup

Search Result 25, Processing Time 0.023 seconds

Lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression

  • Hou, Chongchi;Zheng, Wenzhong
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.239-251
    • /
    • 2022
  • The use of lateral reinforcement in confined concrete columns can improve bearing capacity and deformability. The lateral responses of lateral reinforcement significantly influence the effective confining pressure on core concrete. However, lateral strain-axial strain model of concrete columns confined by lateral reinforcement has not received enough attention. In this paper, based on experimental results of 85 concrete columns confined by lateral reinforcement under axial compression, the effect of unconfined concrete compressive strength, volumetric ratio, lateral reinforcement yield strength, and confinement type on lateral strain-axial strain curves was investigated. Through parameter analysis, it indicated that with the same level of axial strain, the lateral strain slightly increased with the increase in the unconfined concrete compressive strength, but decreased with the increase in volumetric ratio significantly. The lateral reinforcement yield strength had slight influence on lateral strain-axial strain curves. At the same level of lateral strain, the axial strain of specimen with spiral was larger than that of specimen with stirrup. Furthermore, a lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression was proposed by introducing the effects of unconfined concrete compressive strength, volumetric ratio, confinement type and effective confining pressure, which showed good agreement with the experimental results.

Failure Behavior of FRP RC Beams without Shear Reinforcements (전단 보강이 없는 FRP RC보의 파괴 거동)

  • Lee, Jae-Hoon;Son, Hyun-A;Shin, Sung-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.199-208
    • /
    • 2010
  • In order to substitute FRP bar for steel bar in new structures, it is necessary to establish a reliable design code. But relatively little research has been conducted on the material in Korea. So, a total of 22 beam specimens (18 GFRP reinforced concrete and 4 conventional steel reinforced concrete) were constructed and tested. In the first phase of the experiment, it was carried out to observe flexural behavior, and collect deflection and crack data. In order to eliminate of the uncertainty by the shear reinforcements and induce flexural failure mode, any stirrup were not used and only shear span-depth ratio were adjusted. However, almost beams were broken by shear and the ACI 440.1R, CSA S806, which were used to design test beams, showed considerable deviation between prediction and test results of shear strengths. Therefore in the second phase of the study, shear failure modes and behavior were observed. A standard specimen had dimensions of 3,300 mm long ${\times}$ 800 mm wide ${\times}$ 200 mm effective depth. Clear span and shear span were 2,800 mm, 1,200 mm respectively. Control shear span-depth ratio was 6.0. Four-point bending test over simple support was conducted. Variables of the specimens were concrete compressive strength, type and elastic modulus of reinforcement, shear span-depth ratio, effective reinforcement ratio, the effect of bundle placing method and cover thickness.

Shear Strength of Ultra-High Performance Fiber-Reinforced Concrete(UHPFRC) I-shaped Beams without Stirrup (강섬유 보강 초고성능 콘크리트(UHPFRC) I형 보의 전단 강도)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.53-64
    • /
    • 2017
  • Ultra-high performance fiber-reinforced concrete (UHPFRC) is characterized by a post-cracking residual tensile strength with a large tensile strain as well as a high compressive strength. To determine a material tensile strength of UHPFRC, three-point loading test on notched prism and direct tensile test on doubly notched plate were compared and then the design tensile strength is decided. Shear tests on nine I-shaped beams with varied types of fiber volume ratio, shear span ratio and size effect were conducted to investigate shear behavior in web. From the test results, the stress redistribution ability represented as diagonal cracked zone was quantified by inclination of principal stress in web. The test results shows that the specimens were capable of resistance to shear loading without stirrup in a range of large deformation and the strength increase with post-cracking behavior is stable. However at the ultimate state all test specimens failed as a crack localization in the damaged zone and the shear strength of specimens is affected by shear span ratio and effective depth. Strength predictions show that the existing recommendations should be modified considering shear span ratio and effective depth as design parameters.

GMDH-based prediction of shear strength of FRP-RC beams with and without stirrups

  • Kaveh, Ali;Bakhshpoori, Taha;Hamze-Ziabari, Seyed Mahmood
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.197-207
    • /
    • 2018
  • In the present study, group method of data handling networks (GMDH) are adopted and evaluated for shear strength prediction of both FRP-reinforced concrete members with and without stirrups. Input parameters considered for the GMDH are altogether 12 influential geometrical and mechanical parameters. Two available and very recently collected comprehensive datasets containing 112 and 175 data samples are used to develop new models for two cases with and without shear reinforcement, respectively. The proposed GMDH models are compared with several codes of practice. An artificial neural network (ANN) model and an ANFIS based model are also developed using the same databases to further assessment of GMDH. The accuracy of the developed models is evaluated by statistical error parameters. The results show that the GMDH outperforms other models and successfully can be used as a practical and effective tool for shear strength prediction of members without stirrups ($R^2=0.94$) and with stirrups ($R^2=0.95$). Furthermore, the relative importance and influence of input parameters in the prediction of shear capacity of reinforced concrete members are evaluated through parametric and sensitivity analyses.

Comparison of macrosynthetic and steel FRC shear-critical beams with similar residual flexure tensile strengths

  • Ortiz-Navas, Francisco;Navarro-Gregori, Juan;Leiva, Gabriel;Serna, Pedro
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.491-503
    • /
    • 2020
  • This study extends previous experimental research on the shear behaviour of macrosynthetic fibre-reinforced concrete beams and compares them to steel fibre-reinforced concrete beams with similar mechanical and geometrical properties. This work employed two fibre types: 60/0.9 (long/diameter) double hooked-end steel fibre and 60/85 monofilament polypropylene fibre. Beams were tested by shear loading covering parameters, such as two different cross-section widths, two shear-span-to-effective-depth ratios, two fibre types and using repetitions with and without transverse reinforcement. For quantitative comparison purposes, crack pattern evolution was studied along increasing loads levels. Effects were studied by photogrammetry, including influence of fibres on crack propagation in uncracked and dowel zones, influence of fibres on stirrup behaviour, and shear deformation or kinematics of critical shear cracks. The results evidenced similar effectiveness for both fibre types in controlling shear crack propagation and horizontal dowel cracking. Both fibres provided similar shear ductility and shear deflections. Consequently, the authors confirm that residual flexural tensile strengths are a convenient parameter for characterising the shear behaviour of fibre-reinforced concrete beams.

Shear strengthening effect by bonded GFRP strips and transverse steel on RC T-beams

  • Panda, K.C.;Bhattacharyya, S.K.;Barai, S.V.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.1
    • /
    • pp.75-98
    • /
    • 2013
  • This study focuses on shear strengthening performance of simply supported reinforced concrete (RC) T-beams bonded by glass fibre reinforced polymer (GFRP) strips in different configuration, orientations and transverse steel reinforcement in different spacing. Eighteen RC T-beams of 2.5 m span are tested. Nine beams are used as control beam. The stirrups are provided in three different spacing such as without stirrups and with stirrups at a spacing of 200 mm and 300 mm. Another nine beams are used as strengthened beams. GFRP strips are bonded in shear zone in U-shape and side shape with two types of orientation of the strip at $45^{\circ}$ and $90^{\circ}$ to the longitudinal axis of the beam for each type of stirrup spacing. The experimental result indicates that the beam strengthened with GFRP strips at $45^{\circ}$ orientation to the longitudinal axis of the beam are much more effective than $90^{\circ}$ orientation. Also as transverse steel increases, the effectiveness of the GFRP strips decreases.

A Study on the Effective Calculation of Rebar QTO in the Early Design Phase through the Application of BIM Model (BIM 모델 활용을 통한 초기설계단계에서의 효율적인 철근물량 산출 방안 연구)

  • Lee, Jae-Cheol
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.5
    • /
    • pp.145-152
    • /
    • 2019
  • In this study, rebar QTO(Quantity Take-Off) was quickly produced from the BIM model prepared by Revit in the early design phase, and the available premium rates were quantitatively presented. For this purpose, the amount of rebar calculated using the BuilderHub, which specializes in calculating rebar QTO, was analyzed according to various factors such as member type, rebar diameter, building size, item type, and order length, and the effect of each factor on the rebar QTO was determined. In addition, the BIM model generated on Revit was used to establish parameters and processes required to produce rebar QTO, and proposed a rebar premium rate and a stirrup/hoop premium rate based on the BuilderHub output results. Through this study, it is expected that a rapid and efficient comparative evaluation of rebar QTO will be possible according to various structural design alternatives in the early design phase.

The Effects of the Stirrup Length Fitted to the Rider's Lower Limb Length on the Riding Posture for Less Skilled Riders during Trot in Equestrian (승마 속보 시 미숙련자에게 적용한 하지장 비율 74.04% 등자길이 피팅의 기승자세 효과)

  • Hyun, Seung-Hyun;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.335-342
    • /
    • 2015
  • Objective : The purposes of this study was to analyze the effects of the stirrup length fitted to the rider's lower limb length and it's impact on less skilled riders during trot in equestrian events. Methods : Participants selected as subjects consisted of less skilled riders(n=5, mean age: $40.02{\pm}10.75yrs$, mean heights: $169.77{\pm}2.08cm$, mean body weights: $67.65{\pm}7.76kg$, lower limb lengths: $97.26{\pm}2.35cm$, mean horse heights: $164.00{\pm}5.74cm$ with 2 type of stirrups lengths(lower limb ratio 74.04%, and 79.18%) during trot. The variables analyzed consisted of the displacement for Y axis and Z axis(head, and center of mass[COM]) with asymmetric index, trunk front-rear angle(consistency index), lower limb joint(Right hip, knee, and ankle), and average vertical forces of horse rider during 1 stride in trot. The 4 camcorder(HDR-HC7/HDV 1080i, Spony Corp, Japan) was used to capture horse riding motion at a rate of 60 frames/sec. Raw data was collected from Kwon3D XP motion analysis package ver 4.0 program(Visol, Korea) during trot. Results : The movements and asymmetric index didn't show significant difference at head and COM, Also, 74.04% stirrups lengths in trunk tilting angle showed significant difference with higher consistency than that of 79.18% stirrups lengths. Hip and knee joint angle showed significant difference with more extended posture than that of 74.04% stirrups lengths during trot. Ankle angle of 79.18% stirrups length showed more plantarflexion than that of 74.04% stirrups lengths. Average vertical force of rider showed significant difference with higher force at 79.18% stirrups lengths than that of 74.04% stirrups lengths during stance phase. Conclusion : When considering the above, 74.04% stirrups length could be effective in impulse reduction with consistent posture in rather less skilled horse riders.

Performance of Reinforced Concrete Beams Strengthened with Bi-directional CFRP Strips (이 방향 탄소섬유 스트립을 사용하여 보강된 콘크리트 보의 거동에 대한 연구)

  • Kim, Changhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.30-36
    • /
    • 2018
  • Researches on strengthening and rehabilitation are important since structural capacity is degraded by deterioration or damage of structural members. An effective strengthening scheme such as an externally bonded Carbon Fiber Reinforced Polymers (CFRP) can improve the structural performance of a concrete structure in a cost-effective way. Therefore, many experimental studies on strengthening methods have been widely carried out. In regards to the shear strengthening of a concrete beam, variables of the experimental studies were the amount of CFRP, the angle of the strip, the width of the strip, and the interaction between the materials. However, there are insufficient researches on bi-directional CFRP layout compared to the previous researches. In this study, a total of ten concrete beams were designed and tested to evaluate the shear strengthening effect using CFRP strips. The effectiveness of strengthening was investigated based on the shear contribution of materials, strain distribution of stirrup, and the maximum shear capacity of specimens.

A Study on the properties of flexural behavior according to reinforcing method of Composite Beams of different types of structure (이질 구조부 보강방법에 따른 혼합구조보의 휨거동 특성에 관한 연구)

  • Lim, Byung Ho;Park, Jung Min;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.419-431
    • /
    • 2001
  • This study was to investigate structural behavior of composite structure beams composed of end-RC. center-Steel according to respective reinforcing method for connection zone composed of different materials (SRC) while attaching main bars on steel-flange by welding. The main reinforcing methods are as follows ; non-reinforcing, vertical shear reinforcing (type-stirrup), inclined reinforcing(type-x), horizontal reinforcing(type-web, 0.3L), double horizontal reinforcing (type-web, 0.3L), vertical reinforcing (type-flange, 0.3L). Consequently, It showed little difference in structural properties like ductility and strength according to the attaching method of main bars. For Maximizing the structural properties of composite beam, the most effective methods were vertical reinforcing one and double horizontal reinforcing one.

  • PDF